板ガラスの遮音性能
～開口部の遮音設計のための資料～

JIS A 1416 に基づく音響透過損失データ
（2015年版）

2016年9月修正版

板硝子協会
はじめに

この技術資料は、JIS A 1416 :2000「実験室における建築部材の空気音遮断性能の測定方法」に基づいて測定した各種の板ガラスの音響透過損失のデータ値を取りまとめたものである。

板硝子協会の防音委員会では、各種の代表的な板ガラスについて同一測定条件による遮音性能測定値を提示することにより、ガラス開口部の防音設計に当たって使用するガラスの種類を選択する為の参考資料として、1986 年（昭和61年）3月に「板ガラスの遮音性能に関する資料」を取りまとめた。その後1988年（昭和63年）3月にはデータを追加して「増補改訂版」とし、「青本」という通称で広く関係先に利用されてきた。

その後、2000年（平成12年）1月にJIS A 1416が全面的にISO140「建築物及び建築部材の遮音測定」Part 1「実験室条件」及びPart 3「空気音遮音の実験室測定方法」に整合した内容に改正された。また同時にJIS A 1419-1「建築物及び建築部材の遮音性能の評価方法－第1部：空気音遮断性能」も改正され、ISO717 Part 1 の単一数値評価量が導入された。

板硝子協会では、このようなJIS改正にともない、測定データを整理し、2000年（平成12年）3月に「新JISに基づく音響透過損失データ(2000年版)」として青本を改訂した。
また、2011年（平成23年）3月には、現在普及している「合わせ複層ガラス」について、おもに住宅（戸建住宅、マンション）用とし
て使用されるガラス構成の音響透過損失データを拡充した「JIS A 1416 に基づく音響透過損失データ（2011年版）」として発行した。

さらに、近年、ガラスの割れ落下的防止対策の観点からビルや高層マンション用として、総厚が22〜43mm、面密度が最大77.5kg/m²と
なる合わせ複層ガラスの構成での音響透過損失を測定し、「JIS A 1416 に基づく音響透過損失データ」として2012年、2014年に発行した。

このように、2011年の住宅用合わせ複層ガラス、2012年追補版、2014年追補版でのビル、高層マンション用合わせ複層ガラスの追加
にて、現在、建築用ガラスとして普及しているガラス構成の音響透過
損失データを提示できることとなった。

そこで、今回、これまで追補版として発行したデータまでを含めた
改訂版として、「JIS A 1416 に基づく音響透過損失データ（2015年版）」
を発行する。

2015年12月 板硝子協会
目次

1. JIS A 1416-2000 に基づく音響透過損失の測定2
 1.1 測定方法の概要 ..2
 1.2 残響室 ...3
 1.3 開口部調整壁 ..4
 1.4 試料の取付方法 ...7
 1.5 測定方法 ...9

2. 板ガラスの遮音性能 ...11
 2.1 測定品目 ...13
 2.2 単板ガラスの音響透過損失データ ..16
 2.3 合わせガラスの音響透過損失データ ..26
 2.4 複層ガラスの音響透過損失データ ...35
 2.5 二重窓形式の音響透過損失データ ...56
 2.6 合わせ複層ガラスの音響透過損失データ64

3. 各種板ガラスの遮音性能の特徴 ...101
 3.1 単板ガラスの遮音性能 ..101
 3.2 合わせガラスの遮音性能 ...105
 3.3 複層ガラスの遮音性能 ..108
 3.4 二重窓形式の遮音性能 ..113
 3.5 合わせ複層ガラスの遮音性能 ..116

4. 各種板ガラスの遮音性能一覧表 ...129

参考資料 ..131

資料-1 コインシデンス限界周波数 算出方法132
資料-2 低音域共鳴透過周波数 算出方法 ...136
資料-3 設置条件の影響による板ガラスの遮音性能について137
 （①ガラス寸法による影響、②ガラス支持条件による影響）
1. JIS A 1416-2000 に基づく音響透過損失の測定

1.1 測定方法の概要

測定は、一般財団法人小林理学研究所の第 3 残響室及び第 4 残響室の開口部を用いて行った（図 2.1 参照）。残響室の開口部及び計測方法は、ISO140 Part1「建築物及び建築部材の遮音測定—実験室条件」、Part3「建築物及び建築部材の遮音測定—空気音遮音の実験室測定方法」に基づくものであり、つまり JIS A 1416: 2000「実験室における建築部材の空気音遮断性能測定方法」に対応したものになっている。ガラス試料寸法は、全て幅 1230mm×高さ 1480mm である。

なお、測定品目は単板ガラス 10 種、合わせガラス 9 種、複層ガラス 21 種、合わせ複層ガラス 37 種及び二重窓形式 8 種の合計 85 種類である。

(注) JIS A 1416: 2000 では測定用の試験室として「タイプⅠ試験室」と「タイプⅡ試験室」を規定している。

タイプⅠ試験室は、旧 JIS (JIS A 1416: 1974) に規定されていた不整形残響室であり、ISO140 Part1 には規定されていないが、わが国では広く用いられている。タイプⅡ試験室は ISO140 Part1 に規定されているもので、形状は矩形、音源室と受音室の容積は 50m³以上で両室の容積は 10％以上異なることが望ましいとされている。

透過損失に対しては、実験室の形状、容積よりも取付開口、測定方法の影響が大きいことが一部実験により確認されていること、板協方式測定との差を確認する必要があることの理由から、タイプⅠ試験室に相当する不整形残響室での測定を実施した。なお、JIS A 1416: 2000 では、材料などの一般的な遮音性能を表す指標として音響透過損失を測定する場合には、原則としてタイプⅠ試験室を用いるとしている。
1. JIS A 1416-2000 に基づく音響透過損失の測定

1.2 残響室

図1.2.1に示すように測定を行った第3残響室及び第4残響室は、共に室容積164m²、表面積179m²の不整形残響室である。両室間には3m×3mの試料取付開口部が設けてあり、この部分にISO140 Part1、3（JIS A 1416:2000も同一内容）に従った方法で開口部調整壁を取り付けた。
1.3 開口部調整壁

開口部調整壁は、図 1.3.1 に示すように、150mm 厚の砂詰めされた重量ブロックの二重壁で構成され、中空層には 50mm 厚のミネラルウール（120kg/m³）を充填した。両側の壁はモルタルで表面を仕上げ、全壁厚は 410mm である。モルタル仕上げ（15mm と 40mm）を含めた各々の壁の面密度は、288kg/m² と 357kg/m² である。

開口部の大きさは、ガラス試料が設置される側の壁が 1250mm × 1500mm、もう一方の壁が両側辺及び上辺に 60mm の段差をつけて 1370mm × 1560mm とした。開口部の内法面は、試料が設置される側が石膏プラスター仕上げ（15mm）、もう一方は 15mm 厚の石膏ボードを接着し、両側の壁の隙間はシリコーンでコーチングした。
図 1.3.1 開口部調整壁と垂直断面
次に、この型の遮音性能を図 1.3.2 に示した。これは開口部にも調整壁と同様の壁を施工して測定した結果であり、ガラスの遮音性能測定を行うには十分である。

図 1.3.2 開口部調整壁の透過損失
1.4 試料の取付方法
試料の取付位置は、試料の両側の凹み（ニッシェ）が、2:1（270mm : 140mm）の比で異なった深さになるように設置した（図 1.3.1 参照）。試料を固定するのに 2 つの木製押縁（25mm×25mm）を用い、試験開口の縁とガラス試料の間は 10mm のエッジクリアランス、木製押縁とガラス試料の間は 5mm の面クリアランスを設けた。これらの隙間部分には ISO 及び JIS の規定に適合する性能をもったパテ（商品名:Perenator TX2001S）を充填した。又、ガラス試料のかかり代は 15mm である（図 1.4.1 参照）。

図 1.4.1 ガラス試料の納まり
なお、二重窓形式の中で、空気層が200mmの取付条件については、
図1.4.2に示すように100mm×100mmの角材を開口部調整壁にアンカーボルトで固定し、そこにもう一方のガラス試料を設置した。

図1.4.2 二重窓形式の空気層200mmの場合の納まり
1.5 測定方法
室内音圧レベルについては、1/3 オクターブバンドごとの値を音源室及び受音室内の各々 5 カ所の固定測定点で測定した。

今回のガラス試料の測定に当たっては、音源スピーカーの設置位置を 1 室当たり 3 カ所とし、音源室と受音室を入れ替えて計 6 回の測定を行い（図 1.5.1 参照）、それらの算術平均値をそのガラス試料の測定値とした。音源はスペクトル調整をした広帯域雑音を用いて全ての帯域を同時に測定した。

ISO 140 Part 3 「建築物及び建築部材の遮音測定—空気音遮音の実験室測定方法」及び JIS A 1416 「実験室における建築部材の空気音遮断性能の測定方法」においては、音響透過損失 \(R \) は次式（1）によって求められる。

\[
R = L_1 - L_2 + 10 \log_{10}(S/A) \quad \cdots (1)
\]

ここで、

- \(L_1 \) ：音源室における平均音圧レベル [dB]
- \(L_2 \) ：受音室における平均音圧レベル [dB]
- \(S \) ：開放した試験開口の面積 [m\(^2\)]（1.25m × 1.5m）
- \(A \) ：受音室の等価吸音面積 [m\(^2\)]
等価吸音面積が合まれる式(1)の補正項は、ISO 354「残響室における吸音の測定」に従って測定された残響時間とセイビンの式から以下のように算出される。

\[A = 0.16 \frac{V}{T} \quad \cdots \quad (2) \]

ここで、
- \(A \)：受音室の等価吸音面積 \([m^2]\)
- \(V \)：受音室の容積 \([m^3]\)
- \(T \)：受音室の残響時間 \([S]\)

図 1.5.1 音源位置と測定方向
2. 板ガラスの遮音性能

測定品目は、12〜14ページの一覧表に示す通りである。
各試料ごとの測定結果は、単板ガラス、合わせガラス、複層ガラス、
二重窓形式および合わせ複層ガラスの5種類に大別して以下に示す。
また、測定結果は、1/3オクターブバンドの周波数ごとの音響透過
損失の値を、図および表で示した。
なお、実用的な設計用資料として、各測定結果の下に、オクターブ
バンドに合成(1)した音響透過損失の値及び各種の遮音性能評価値、
平均値R_m(2)
STC(3)
遮音等級（T等級）(4)
R_w(5)
R_{A,2}(6)
の算出結果を示した。
全試料の測定データは、一覧表としてまとめた(P.128,P.129)。

(注1)
1/3オクターブバンドからオクターブバンドへの換算は、JIS A 1416:
2000による。

(注2)
平均値は、100〜2500Hzの範囲での1/3オクターブバンドの周波数ごとの
測定結果の算術平均値（JIS A 1419－1:2000附属書2）である。
板ガラスの遮音性能（2015年版）

(注 3)
STC は、ASTM E 413 による。

(注 4)
JIS A 4706 : 2000 「サッシ」の遮音等級を準用した。ただし、本書においては「ガラス単体」の測定結果にこの遮音等級を適用し、T 等級相当と記載した。したがって、本書記載の遮音等級（T 等級相当）はサッシを含む「窓」の遮音性能を示すものではない。

1/3 オクターブバンドからオクターブバンド 125Hz および 4000Hz の換算については、改訂前の本書においてはそれぞれに 100Hz と 5000Hz の測定値も使用していたが、今回はこれらを使用せず JIS A 4706 に準拠した方法で求めている。

(注 5)
R_w は、JIS A 1419-1 : 2000 による単一数値評価量である。

(注 6)
$R_{A,2}$ は、R_w を JIS A 1419-1 : 2000 によるスペクトル調整項 C_{tr} によって補正した値で、
$R_{A,2} = R_w + C_{tr}$ である。
スペクトル調整項 C_{tr} は、典型的な都市交通騒音に周波数重み特性 A をかけた特性を用いて計算した値である。
2. 板ガラスの遮音性能

2.1 測定品目

測定品目は、下表に示す 85 品種とした。

表 2.1.1 単板ガラス測定品目一覧

<table>
<thead>
<tr>
<th>仕様</th>
<th>No.</th>
<th>ガラス構成</th>
</tr>
</thead>
<tbody>
<tr>
<td>単板ガラス</td>
<td>1</td>
<td>FL3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>FL4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>FL5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>FL6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>PW6.8</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>FL8</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>FL10</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>FL12</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>FL15</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>FL19</td>
</tr>
</tbody>
</table>

表 2.1.2 合わせガラス測定品目一覧

<table>
<thead>
<tr>
<th>仕様</th>
<th>No.</th>
<th>ガラス構成</th>
</tr>
</thead>
<tbody>
<tr>
<td>合わせガラス</td>
<td>11</td>
<td>L6</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>L8</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>L10</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>L12</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>L16</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>L6（低温度）</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>L6（高温度）</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>L12（低温度）</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>L12（高温度）</td>
</tr>
</tbody>
</table>

表 2.1.3 複層ガラス測定品目一覧

<table>
<thead>
<tr>
<th>仕様</th>
<th>No.</th>
<th>ガラス構成</th>
</tr>
</thead>
<tbody>
<tr>
<td>複層ガラス</td>
<td>20</td>
<td>FL3+A6+FL3</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>FL3+A12+FL3</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>FL3+A6+FL5</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>FL3+A12+FL5</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>FL3+A6+FL6</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>FL4+A6+FL4</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>FL4+A6+FL6</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>FL4+A12+FL6</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>FL4+A6+FL8</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>FL5+A6+FL5</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>FL5+A12+FL5</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>FL5+A12+PW6.8</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>FL5+A6+FL8</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>FL5+A6+FL10</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>FL6+A6+FL6</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>FL6+A6+FL10</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>FL6+A6+FL12</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>FL6+A12+FL12</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>FL8+A12+FL8</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>FL8+A6+FL12</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>FL8+A12+FL12</td>
</tr>
</tbody>
</table>
板ガラスの遮音性能（2015年版）

表 2.1.4 二重窓形式測定品目一覧

<table>
<thead>
<tr>
<th>品種</th>
<th>仕様 No.</th>
<th>ガラス構成</th>
<th>仕様 No.</th>
<th>ガラス構成</th>
</tr>
</thead>
<tbody>
<tr>
<td>二重窓形式</td>
<td>41</td>
<td>FL3+A50+FL6</td>
<td>45</td>
<td>FL5+A200+FL8</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>FL3+A100+FL6</td>
<td>46</td>
<td>FL5+A50+複層(FL3+A6+FL6)</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>FL5+A50+FL8</td>
<td>47</td>
<td>FL5+A100+複層(FL3+A6+FL6)</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>FL5+A100+FL8</td>
<td>48</td>
<td>FL5+A200+複層(FL3+A6+FL6)</td>
</tr>
</tbody>
</table>

表 2.1.5 合わせ複層ガラス測定品目一覧（その1）

<table>
<thead>
<tr>
<th>品種</th>
<th>仕様 No.</th>
<th>ガラス構成</th>
<th>合わせガラス詳細</th>
</tr>
</thead>
<tbody>
<tr>
<td>合わせ複層ガラス</td>
<td>49</td>
<td>FL3+A6+L6</td>
<td>L6:FL3+PVB30mil+FL3</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>FL3+A12+L6</td>
<td>”</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>FL4+A6+L6</td>
<td>”</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>FL4+A12+L6</td>
<td>”</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>FL5+A6+L6</td>
<td>”</td>
</tr>
<tr>
<td></td>
<td>54</td>
<td>FL5+A12+L6</td>
<td>”</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>PW6.8+A6+L6</td>
<td>”</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>PW6.8+A8+L6</td>
<td>”</td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>PW6.8+A12+L6</td>
<td>”</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>FL5+A6+L8</td>
<td>L8:FL4+PVB30mil+FL4</td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>FL5+A12+L8</td>
<td>”</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>FL6+A6+L8</td>
<td>”</td>
</tr>
<tr>
<td></td>
<td>61</td>
<td>FL6+A12+L8</td>
<td>”</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>FL4+A6+L9.8</td>
<td>L9.8:PW6.8+PVB30mil+FL3</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>FL4+A8+L9.8</td>
<td>”</td>
</tr>
</tbody>
</table>
表 2.1.6 合わせ複層ガラス測定品目一覧（その2）

<table>
<thead>
<tr>
<th>品種</th>
<th>No.</th>
<th>ガラス構成</th>
</tr>
</thead>
<tbody>
<tr>
<td>合わせ複層ガラス</td>
<td>64</td>
<td>FL6+A6+L10 L10: FL5+PVB30mil+FL5</td>
</tr>
<tr>
<td>65</td>
<td>FL6+A12+L10 "</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>FL8+A6+L8 L8: FL4+PVB30mil+FL4</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>FL8+A12+L8 "</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>FL8+A6+L10 L10: FL5+PVB30mil+FL5</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>FL8+A12+L10 "</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>FL10+A6+L10 "</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>FL10+A12+L10 "</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>FL12+A6+L10 "</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>FL12+A12+L10 "</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>FL8+A6+L12 L12: FL6+PVB30mil+FL6</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>FL8+A12+L12 "</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>FL10+A6+L12 "</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>FL10+A12+L12 "</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>FL10+A6+L16 L16: FL8+PVB30mil+FL8</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>FL10+A12+L16 "</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>FL12+A6+L12 L12: FL6+PVB30mil+FL6</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>FL12+A12+L12 "</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>FL12+A6+L16 L16: FL8+PVB30mil+FL8</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>FL12+A12+L16 "</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>FL15+A6+L16 "</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>FL15+A12+L16 "</td>
<td></td>
</tr>
</tbody>
</table>

ここで、FL はフロート板ガラス、L は合わせガラス(中間膜ポリビニルブチラール(PVB)厚さ 0.76mm)、PW は網入り磨き板ガラス、A は空気層を意味する。

(注 1) 各記号の後の数字は、呼び厚さを表す(単位：mm)
(注 2) 二重窓形式欄に複層と示している部分は、複層ガラスであることを表す。
(注 3) 合わせガラスの低温度は6〜7℃、高温度は30〜31℃、その他は20±1℃の温度条件で測定した。
2.2 単板ガラスの音響透過損失データ

各グラフには、質量則(ランダム入射)、T等級線(1/3Oct.による評価)、Rw等級線を併記する。なお、質量則は合計面密度で計算している。

1. FL3

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>1/3Oct.</th>
<th>Oct.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>14.7</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>14.5</td>
<td>15.3</td>
</tr>
<tr>
<td>160</td>
<td>17.3</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>17.6</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>20.2</td>
<td>19.5</td>
</tr>
<tr>
<td>315</td>
<td>21.7</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>23.8</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>25.6</td>
<td>25.3</td>
</tr>
<tr>
<td>630</td>
<td>27.2</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>28.7</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>30.0</td>
<td>29.8</td>
</tr>
<tr>
<td>1250</td>
<td>31.1</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>32.5</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>33.4</td>
<td>33.0</td>
</tr>
<tr>
<td>2500</td>
<td>33.2</td>
<td></td>
</tr>
<tr>
<td>3150</td>
<td>30.5</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>23.0</td>
<td>25.6</td>
</tr>
<tr>
<td>5000</td>
<td>26.4</td>
<td></td>
</tr>
</tbody>
</table>

音響透過損失(dB)

平均値 25

STC 27

T等級相当※ T-1 T-1

Rw 29

RA2 25

※p11（注4）参照
2. FL4

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>18.0</td>
</tr>
<tr>
<td>125</td>
<td>17.1</td>
</tr>
<tr>
<td>160</td>
<td>19.4</td>
</tr>
<tr>
<td>200</td>
<td>20.7</td>
</tr>
<tr>
<td>250</td>
<td>21.9</td>
</tr>
<tr>
<td>315</td>
<td>22.0</td>
</tr>
<tr>
<td>400</td>
<td>23.8</td>
</tr>
<tr>
<td>500</td>
<td>27.7</td>
</tr>
<tr>
<td>630</td>
<td>29.2</td>
</tr>
<tr>
<td>800</td>
<td>30.7</td>
</tr>
<tr>
<td>1000</td>
<td>32.1</td>
</tr>
<tr>
<td>1250</td>
<td>33.0</td>
</tr>
<tr>
<td>1600</td>
<td>33.8</td>
</tr>
<tr>
<td>2000</td>
<td>33.7</td>
</tr>
<tr>
<td>2500</td>
<td>31.0</td>
</tr>
<tr>
<td>3150</td>
<td>28.1</td>
</tr>
<tr>
<td>4000</td>
<td>27.4</td>
</tr>
<tr>
<td>5000</td>
<td>25.8</td>
</tr>
</tbody>
</table>

平均値: 26
STC: 27
T等級相当: T-1 T-1
Rw: 30
RA,2: 27

※p11（注4）参照
3. FL5

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>18.2</td>
</tr>
<tr>
<td>125</td>
<td>18.7</td>
</tr>
<tr>
<td>160</td>
<td>20.7</td>
</tr>
<tr>
<td>200</td>
<td>22.2</td>
</tr>
<tr>
<td>250</td>
<td>24.2</td>
</tr>
<tr>
<td>315</td>
<td>25.2</td>
</tr>
<tr>
<td>400</td>
<td>27.4</td>
</tr>
<tr>
<td>500</td>
<td>29.5</td>
</tr>
<tr>
<td>630</td>
<td>31.0</td>
</tr>
<tr>
<td>800</td>
<td>32.4</td>
</tr>
<tr>
<td>1000</td>
<td>33.7</td>
</tr>
<tr>
<td>1250</td>
<td>34.3</td>
</tr>
<tr>
<td>1600</td>
<td>34.3</td>
</tr>
<tr>
<td>2000</td>
<td>31.1</td>
</tr>
<tr>
<td>2500</td>
<td>24.6</td>
</tr>
<tr>
<td>3150</td>
<td>28.4</td>
</tr>
<tr>
<td>4000</td>
<td>31.2</td>
</tr>
<tr>
<td>5000</td>
<td>34.4</td>
</tr>
</tbody>
</table>

平均値 27
STC 29
T等級相当※ T-1 T-2
Rw 31
R_{a,2} 28

※ p11（注4）参照
4. FL6

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>17.7</td>
</tr>
<tr>
<td>125</td>
<td>18.5</td>
</tr>
<tr>
<td>160</td>
<td>22.0</td>
</tr>
<tr>
<td>200</td>
<td>23.2</td>
</tr>
<tr>
<td>250</td>
<td>25.7</td>
</tr>
<tr>
<td>315</td>
<td>27.1</td>
</tr>
<tr>
<td>400</td>
<td>29.1</td>
</tr>
<tr>
<td>500</td>
<td>30.9</td>
</tr>
<tr>
<td>630</td>
<td>32.4</td>
</tr>
<tr>
<td>800</td>
<td>33.7</td>
</tr>
<tr>
<td>1000</td>
<td>34.3</td>
</tr>
<tr>
<td>1250</td>
<td>34.7</td>
</tr>
<tr>
<td>1600</td>
<td>32.2</td>
</tr>
<tr>
<td>2000</td>
<td>26.8</td>
</tr>
<tr>
<td>2500</td>
<td>28.3</td>
</tr>
<tr>
<td>3150</td>
<td>32.0</td>
</tr>
<tr>
<td>4000</td>
<td>34.8</td>
</tr>
<tr>
<td>5000</td>
<td>37.3</td>
</tr>
</tbody>
</table>

平均値 28
STC 31
T等級相当※ T-1 T-2
Rw 32
RA,2 29
※p11（注4）参照

※p11（注4）参照
5. PW6.8

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>20.7</td>
</tr>
<tr>
<td>125</td>
<td>18.9</td>
</tr>
<tr>
<td>160</td>
<td>22.8</td>
</tr>
<tr>
<td>200</td>
<td>23.2</td>
</tr>
<tr>
<td>250</td>
<td>26.5</td>
</tr>
<tr>
<td>315</td>
<td>28.0</td>
</tr>
<tr>
<td>400</td>
<td>30.0</td>
</tr>
<tr>
<td>500</td>
<td>32.0</td>
</tr>
<tr>
<td>630</td>
<td>33.4</td>
</tr>
<tr>
<td>800</td>
<td>34.5</td>
</tr>
<tr>
<td>1000</td>
<td>35.3</td>
</tr>
<tr>
<td>1250</td>
<td>33.9</td>
</tr>
<tr>
<td>1600</td>
<td>30.0</td>
</tr>
<tr>
<td>2000</td>
<td>27.4</td>
</tr>
<tr>
<td>2500</td>
<td>31.9</td>
</tr>
<tr>
<td>3150</td>
<td>34.7</td>
</tr>
<tr>
<td>4000</td>
<td>36.9</td>
</tr>
<tr>
<td>5000</td>
<td>39.9</td>
</tr>
</tbody>
</table>

平均値: 29
STC: 31
T等級相当: T-2
Rw: 32
Ra,2: 30

※p11（註4）参照
6. FL8

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>20.7</td>
</tr>
<tr>
<td>160</td>
<td>22.0</td>
</tr>
<tr>
<td>200</td>
<td>23.9</td>
</tr>
<tr>
<td>250</td>
<td>25.9</td>
</tr>
<tr>
<td>315</td>
<td>28.2</td>
</tr>
<tr>
<td>400</td>
<td>30.7</td>
</tr>
<tr>
<td>500</td>
<td>32.5</td>
</tr>
<tr>
<td>630</td>
<td>34.1</td>
</tr>
<tr>
<td>800</td>
<td>35.5</td>
</tr>
<tr>
<td>1000</td>
<td>35.1</td>
</tr>
<tr>
<td>1250</td>
<td>30.7</td>
</tr>
<tr>
<td>1600</td>
<td>29.3</td>
</tr>
<tr>
<td>2000</td>
<td>31.0</td>
</tr>
<tr>
<td>2500</td>
<td>34.9</td>
</tr>
<tr>
<td>3150</td>
<td>37.8</td>
</tr>
<tr>
<td>4000</td>
<td>39.7</td>
</tr>
<tr>
<td>5000</td>
<td>42.2</td>
</tr>
</tbody>
</table>

平均値 29

STC 33

※p11（注4）参照
7. FL10

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>23.9</td>
</tr>
<tr>
<td>125</td>
<td>22.5</td>
</tr>
<tr>
<td>160</td>
<td>25.1</td>
</tr>
<tr>
<td>200</td>
<td>25.9</td>
</tr>
<tr>
<td>250</td>
<td>28.3</td>
</tr>
<tr>
<td>315</td>
<td>29.5</td>
</tr>
<tr>
<td>400</td>
<td>32.1</td>
</tr>
<tr>
<td>500</td>
<td>34.3</td>
</tr>
<tr>
<td>630</td>
<td>35.7</td>
</tr>
<tr>
<td>800</td>
<td>35.2</td>
</tr>
<tr>
<td>1000</td>
<td>32.4</td>
</tr>
<tr>
<td>1250</td>
<td>31.4</td>
</tr>
<tr>
<td>1600</td>
<td>31.7</td>
</tr>
<tr>
<td>2000</td>
<td>36.2</td>
</tr>
<tr>
<td>2500</td>
<td>38.9</td>
</tr>
<tr>
<td>3150</td>
<td>41.2</td>
</tr>
<tr>
<td>4000</td>
<td>43.6</td>
</tr>
<tr>
<td>5000</td>
<td>44.9</td>
</tr>
</tbody>
</table>

平均値：31
STC：35
T等級相当：T-2, T-3
Rw：35
Ra,2：32

※p11（注4）参照
8. FL12

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>24.0</td>
</tr>
<tr>
<td>125</td>
<td>24.7</td>
</tr>
<tr>
<td>160</td>
<td>26.4</td>
</tr>
<tr>
<td>200</td>
<td>27.7</td>
</tr>
<tr>
<td>250</td>
<td>30.1</td>
</tr>
<tr>
<td>315</td>
<td>32.0</td>
</tr>
<tr>
<td>400</td>
<td>33.5</td>
</tr>
<tr>
<td>500</td>
<td>35.4</td>
</tr>
<tr>
<td>630</td>
<td>35.9</td>
</tr>
<tr>
<td>800</td>
<td>35.0</td>
</tr>
<tr>
<td>1000</td>
<td>33.6</td>
</tr>
<tr>
<td>1250</td>
<td>32.9</td>
</tr>
<tr>
<td>1600</td>
<td>36.0</td>
</tr>
<tr>
<td>2000</td>
<td>39.2</td>
</tr>
<tr>
<td>2500</td>
<td>41.9</td>
</tr>
<tr>
<td>3150</td>
<td>44.0</td>
</tr>
<tr>
<td>4000</td>
<td>45.9</td>
</tr>
<tr>
<td>5000</td>
<td>47.0</td>
</tr>
</tbody>
</table>

平均値 33
STC 37
T等級相当 T-3 T-3
Rw 36
R_{A,2} 33

※p11（注4）参照
9. FL15

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>23.5</td>
</tr>
<tr>
<td>125</td>
<td>25.4</td>
</tr>
<tr>
<td>160</td>
<td>27.6</td>
</tr>
<tr>
<td>200</td>
<td>28.8</td>
</tr>
<tr>
<td>250</td>
<td>31.0</td>
</tr>
<tr>
<td>315</td>
<td>32.9</td>
</tr>
<tr>
<td>400</td>
<td>34.6</td>
</tr>
<tr>
<td>500</td>
<td>35.9</td>
</tr>
<tr>
<td>630</td>
<td>36.6</td>
</tr>
<tr>
<td>800</td>
<td>33.9</td>
</tr>
<tr>
<td>1000</td>
<td>33.1</td>
</tr>
<tr>
<td>1250</td>
<td>36.1</td>
</tr>
<tr>
<td>1600</td>
<td>39.9</td>
</tr>
<tr>
<td>2000</td>
<td>42.7</td>
</tr>
<tr>
<td>2500</td>
<td>45.0</td>
</tr>
<tr>
<td>3150</td>
<td>47.5</td>
</tr>
<tr>
<td>4000</td>
<td>48.9</td>
</tr>
<tr>
<td>5000</td>
<td>50.5</td>
</tr>
<tr>
<td>平均値</td>
<td>34</td>
</tr>
<tr>
<td>STC</td>
<td>38</td>
</tr>
<tr>
<td>T等級相当※</td>
<td>T-3</td>
</tr>
<tr>
<td>Rw</td>
<td>38</td>
</tr>
<tr>
<td>Rₐ₂</td>
<td>34</td>
</tr>
</tbody>
</table>

※p11（注4）参照
2. 板ガラスの遮音性能

10. FL19

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>25.5</td>
</tr>
<tr>
<td>125</td>
<td>26.7</td>
</tr>
<tr>
<td>160</td>
<td>28.2</td>
</tr>
<tr>
<td>200</td>
<td>29.3</td>
</tr>
<tr>
<td>250</td>
<td>31.8</td>
</tr>
<tr>
<td>315</td>
<td>33.6</td>
</tr>
<tr>
<td>400</td>
<td>35.3</td>
</tr>
<tr>
<td>500</td>
<td>36.5</td>
</tr>
<tr>
<td>630</td>
<td>34.0</td>
</tr>
<tr>
<td>800</td>
<td>33.7</td>
</tr>
<tr>
<td>1000</td>
<td>36.7</td>
</tr>
<tr>
<td>1250</td>
<td>40.6</td>
</tr>
<tr>
<td>1600</td>
<td>44.3</td>
</tr>
<tr>
<td>2000</td>
<td>46.8</td>
</tr>
<tr>
<td>2500</td>
<td>48.6</td>
</tr>
<tr>
<td>3150</td>
<td>50.2</td>
</tr>
<tr>
<td>4000</td>
<td>51.7</td>
</tr>
<tr>
<td>5000</td>
<td>51.4</td>
</tr>
</tbody>
</table>

周波数 (Hz) 1/3Oct. Oct.
100 25.5
125 26.7 26.7
160 28.2
200 29.3
250 31.8 31.2
315 33.6
400 35.3
500 36.5 35.1
630 34.0
800 33.7
1000 36.7 36.2
1250 40.6
1600 44.3
2000 46.8 46.2
2500 48.6
3150 50.2
4000 51.7 51.1
5000 51.4

平均値 35
STC 39
T等級相当※ T-3 T-3
Rw 39
RA,2 35
※p11（注4）参照
2.3 合わせガラスの音響透過損失データ

11. L6（中間膜 PVB 0.76mm）

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3Oct.</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>19.0</td>
</tr>
<tr>
<td>125</td>
<td>19.2</td>
</tr>
<tr>
<td>160</td>
<td>20.7</td>
</tr>
<tr>
<td>200</td>
<td>22.7</td>
</tr>
<tr>
<td>250</td>
<td>24.5</td>
</tr>
<tr>
<td>315</td>
<td>26.8</td>
</tr>
<tr>
<td>400</td>
<td>28.9</td>
</tr>
<tr>
<td>500</td>
<td>30.5</td>
</tr>
<tr>
<td>630</td>
<td>32.4</td>
</tr>
<tr>
<td>800</td>
<td>33.9</td>
</tr>
<tr>
<td>1000</td>
<td>34.6</td>
</tr>
<tr>
<td>1250</td>
<td>35.3</td>
</tr>
<tr>
<td>1600</td>
<td>34.8</td>
</tr>
<tr>
<td>2000</td>
<td>32.4</td>
</tr>
<tr>
<td>2500</td>
<td>30.6</td>
</tr>
<tr>
<td>3150</td>
<td>35.0</td>
</tr>
<tr>
<td>4000</td>
<td>38.7</td>
</tr>
<tr>
<td>5000</td>
<td>42.1</td>
</tr>
<tr>
<td>平均值</td>
<td>28</td>
</tr>
<tr>
<td>STC</td>
<td>33</td>
</tr>
<tr>
<td>T等級相当</td>
<td>T-2</td>
</tr>
<tr>
<td>Rw</td>
<td>33</td>
</tr>
<tr>
<td>Ra,2</td>
<td>29</td>
</tr>
</tbody>
</table>

※p11（注4）参照
12. L8（中間膜 PVB 0.76mm）

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>22.9</td>
</tr>
<tr>
<td>125</td>
<td>22.2</td>
</tr>
<tr>
<td>160</td>
<td>22.4</td>
</tr>
<tr>
<td>200</td>
<td>25.3</td>
</tr>
<tr>
<td>250</td>
<td>25.6</td>
</tr>
<tr>
<td>315</td>
<td>27.9</td>
</tr>
<tr>
<td>400</td>
<td>30.4</td>
</tr>
<tr>
<td>500</td>
<td>32.4</td>
</tr>
<tr>
<td>630</td>
<td>34.6</td>
</tr>
<tr>
<td>800</td>
<td>35.9</td>
</tr>
<tr>
<td>1000</td>
<td>35.7</td>
</tr>
<tr>
<td>1250</td>
<td>33.4</td>
</tr>
<tr>
<td>1600</td>
<td>32.4</td>
</tr>
<tr>
<td>2000</td>
<td>32.5</td>
</tr>
<tr>
<td>2500</td>
<td>37.1</td>
</tr>
<tr>
<td>3150</td>
<td>40.6</td>
</tr>
<tr>
<td>4000</td>
<td>43.1</td>
</tr>
<tr>
<td>5000</td>
<td>46.5</td>
</tr>
</tbody>
</table>

平均値 30

STC 34

T等級相当 T-2 T-2

Rw 34

Ra,2 31

※p11（注4）参照
13. L10（中間膜 PVB 0.76mm）

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>1/3Oct.</th>
<th>Oct.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>26.8</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>23.4</td>
<td>25.2</td>
</tr>
<tr>
<td>160</td>
<td>26.2</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>26.4</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>28.5</td>
<td>27.9</td>
</tr>
<tr>
<td>315</td>
<td>29.4</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>31.9</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>33.4</td>
<td>33.4</td>
</tr>
<tr>
<td>630</td>
<td>35.5</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>35.9</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>34.6</td>
<td>34.6</td>
</tr>
<tr>
<td>1250</td>
<td>33.6</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>33.2</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>36.2</td>
<td>35.7</td>
</tr>
<tr>
<td>2500</td>
<td>40.5</td>
<td></td>
</tr>
<tr>
<td>3150</td>
<td>43.5</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>46.2</td>
<td>45.7</td>
</tr>
<tr>
<td>5000</td>
<td>49.1</td>
<td></td>
</tr>
</tbody>
</table>

平均値 32

STC 35

T等級相当 T-2 T-3

Rw 35
R_{\alpha2} 33

※p11（注4）参照
2. 板ガラスの遮音性能

14. L12（中間膜 PVB 0.76mm）

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>26.2</td>
</tr>
<tr>
<td>125</td>
<td>25.7 26.4</td>
</tr>
<tr>
<td>160</td>
<td>27.4</td>
</tr>
<tr>
<td>200</td>
<td>27.9</td>
</tr>
<tr>
<td>250</td>
<td>29.6 29.5</td>
</tr>
<tr>
<td>315</td>
<td>31.7</td>
</tr>
<tr>
<td>400</td>
<td>33.7</td>
</tr>
<tr>
<td>500</td>
<td>35.2 34.9</td>
</tr>
<tr>
<td>630</td>
<td>36.3</td>
</tr>
<tr>
<td>800</td>
<td>36.1</td>
</tr>
<tr>
<td>1000</td>
<td>34.7 34.9</td>
</tr>
<tr>
<td>1250</td>
<td>34.2</td>
</tr>
<tr>
<td>1600</td>
<td>36.1</td>
</tr>
<tr>
<td>2000</td>
<td>39.7 38.7</td>
</tr>
<tr>
<td>2500</td>
<td>43.1</td>
</tr>
<tr>
<td>3150</td>
<td>46.0</td>
</tr>
<tr>
<td>4000</td>
<td>48.4 48.0</td>
</tr>
<tr>
<td>5000</td>
<td>50.8</td>
</tr>
</tbody>
</table>

平均値 33
STC 37
T等級相当※ T-3 T-3
Rw 37
Ra,2 34
※p11（注4）参照
15. L16（中間膜 PVB 0.76mm）

![音響透過損失（dB）のグラフ]

周波数（Hz） | 音響透過損失(dB) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>26.0</td>
</tr>
<tr>
<td>125</td>
<td>26.7</td>
</tr>
<tr>
<td>160</td>
<td>29.1</td>
</tr>
<tr>
<td>200</td>
<td>30.0</td>
</tr>
<tr>
<td>250</td>
<td>31.1</td>
</tr>
<tr>
<td>315</td>
<td>32.6</td>
</tr>
<tr>
<td>400</td>
<td>34.4</td>
</tr>
<tr>
<td>500</td>
<td>35.4</td>
</tr>
<tr>
<td>630</td>
<td>36.2</td>
</tr>
<tr>
<td>800</td>
<td>34.7</td>
</tr>
<tr>
<td>1000</td>
<td>34.7</td>
</tr>
<tr>
<td>1250</td>
<td>37.3</td>
</tr>
<tr>
<td>1600</td>
<td>41.5</td>
</tr>
<tr>
<td>2000</td>
<td>44.3</td>
</tr>
<tr>
<td>2500</td>
<td>46.8</td>
</tr>
<tr>
<td>3150</td>
<td>49.4</td>
</tr>
<tr>
<td>4000</td>
<td>51.3</td>
</tr>
<tr>
<td>5000</td>
<td>53.2</td>
</tr>
</tbody>
</table>

平均値 | 35
STC | 38
T等級相当 | T-3 T-3
Rw | 38
R_a,2 | 35

※p11（注4）参照
16. L6（中間膜 PVB 0.76mm）低温度

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>19.3</td>
</tr>
<tr>
<td>125</td>
<td>18.5</td>
</tr>
<tr>
<td>160</td>
<td>21.8</td>
</tr>
<tr>
<td>200</td>
<td>22.6</td>
</tr>
<tr>
<td>250</td>
<td>25.7</td>
</tr>
<tr>
<td>315</td>
<td>27.2</td>
</tr>
<tr>
<td>400</td>
<td>28.8</td>
</tr>
<tr>
<td>500</td>
<td>30.9</td>
</tr>
<tr>
<td>630</td>
<td>32.3</td>
</tr>
<tr>
<td>800</td>
<td>33.5</td>
</tr>
<tr>
<td>1000</td>
<td>34.2</td>
</tr>
<tr>
<td>1250</td>
<td>34.3</td>
</tr>
<tr>
<td>1600</td>
<td>31.0</td>
</tr>
<tr>
<td>2000</td>
<td>27.0</td>
</tr>
<tr>
<td>2500</td>
<td>29.8</td>
</tr>
<tr>
<td>3150</td>
<td>33.5</td>
</tr>
<tr>
<td>4000</td>
<td>36.8</td>
</tr>
<tr>
<td>5000</td>
<td>40.1</td>
</tr>
</tbody>
</table>

平均値 28
STC 31
T等級相当※ T-2 T-2
Rw 32
Ra,2 29
※p11（注4）参照
17. L6（中間膜 PVB 0.76mm）高温度

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>20.2</td>
</tr>
<tr>
<td>125</td>
<td>19.2</td>
</tr>
<tr>
<td>160</td>
<td>22.3</td>
</tr>
<tr>
<td>200</td>
<td>23.5</td>
</tr>
<tr>
<td>250</td>
<td>25.7</td>
</tr>
<tr>
<td>315</td>
<td>27.3</td>
</tr>
<tr>
<td>400</td>
<td>29.5</td>
</tr>
<tr>
<td>500</td>
<td>31.0</td>
</tr>
<tr>
<td>630</td>
<td>32.8</td>
</tr>
<tr>
<td>800</td>
<td>34.6</td>
</tr>
<tr>
<td>1000</td>
<td>35.3</td>
</tr>
<tr>
<td>1250</td>
<td>36.4</td>
</tr>
<tr>
<td>1600</td>
<td>37.0</td>
</tr>
<tr>
<td>2000</td>
<td>36.7</td>
</tr>
<tr>
<td>2500</td>
<td>35.1</td>
</tr>
<tr>
<td>3150</td>
<td>35.4</td>
</tr>
<tr>
<td>4000</td>
<td>38.3</td>
</tr>
<tr>
<td>5000</td>
<td>41.8</td>
</tr>
</tbody>
</table>

平均値 30
STC 34
T等級相当※ T-2 T-2
Rw 34
RA,2 30
※p11（注4）参照
板ガラスの遮音性能

18. L12（中間膜 PVB 0.76mm）低温度

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>1/3Oct.</th>
<th>Oct.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>22.9</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>24.8</td>
<td>24.7</td>
</tr>
<tr>
<td>160</td>
<td>27.5</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>28.1</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>30.3</td>
<td>29.8</td>
</tr>
<tr>
<td>315</td>
<td>31.9</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>33.4</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>35.1</td>
<td>34.5</td>
</tr>
<tr>
<td>630</td>
<td>35.3</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>34.6</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>33.2</td>
<td>33.5</td>
</tr>
<tr>
<td>1250</td>
<td>32.8</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>39.6</td>
<td>38.6</td>
</tr>
<tr>
<td>2500</td>
<td>42.5</td>
<td></td>
</tr>
<tr>
<td>3150</td>
<td>45.1</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>47.6</td>
<td>47.0</td>
</tr>
<tr>
<td>5000</td>
<td>49.5</td>
<td></td>
</tr>
</tbody>
</table>

平均値 33
STC 36
T等級相当※ T-2 T-3
Rw 36
RA,2 33
※p11（注4）参照
19. L12（中間膜 PVB 0.76mm）高温度

周波数 音響透過損失(dB)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>1/3Oct.</th>
<th>Oct.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>26.2</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>25.0</td>
<td>26.0</td>
</tr>
<tr>
<td>160</td>
<td>26.9</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>27.7</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>29.8</td>
<td>29.5</td>
</tr>
<tr>
<td>315</td>
<td>32.0</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>34.5</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>36.3</td>
<td>36.0</td>
</tr>
<tr>
<td>630</td>
<td>37.8</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>38.4</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>38.5</td>
<td>38.5</td>
</tr>
<tr>
<td>1250</td>
<td>38.5</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>38.8</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>40.6</td>
<td>40.7</td>
</tr>
<tr>
<td>2500</td>
<td>44.1</td>
<td></td>
</tr>
<tr>
<td>3150</td>
<td>46.8</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>48.9</td>
<td>48.8</td>
</tr>
<tr>
<td>5000</td>
<td>52.2</td>
<td></td>
</tr>
</tbody>
</table>

平均値 34
STC 39
T等級相当※ T-3 T-3
Rw 38
R_{A,2} 35

※p11（注4）参照
2.4 複層ガラスの音響透過損失データ

20. FL3+A6+FL3

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>20.0</td>
</tr>
<tr>
<td>125</td>
<td>18.5</td>
</tr>
<tr>
<td>160</td>
<td>19.4</td>
</tr>
<tr>
<td>200</td>
<td>20.1</td>
</tr>
<tr>
<td>250</td>
<td>21.3</td>
</tr>
<tr>
<td>315</td>
<td>21.7</td>
</tr>
<tr>
<td>400</td>
<td>18.5</td>
</tr>
<tr>
<td>500</td>
<td>19.2</td>
</tr>
<tr>
<td>630</td>
<td>22.6</td>
</tr>
<tr>
<td>800</td>
<td>25.8</td>
</tr>
<tr>
<td>1000</td>
<td>28.9</td>
</tr>
<tr>
<td>1250</td>
<td>31.6</td>
</tr>
<tr>
<td>1600</td>
<td>34.9</td>
</tr>
<tr>
<td>2000</td>
<td>37.2</td>
</tr>
<tr>
<td>2500</td>
<td>40.6</td>
</tr>
<tr>
<td>3150</td>
<td>40.4</td>
</tr>
<tr>
<td>4000</td>
<td>31.9</td>
</tr>
<tr>
<td>5000</td>
<td>30.4</td>
</tr>
</tbody>
</table>

- 平均値: 25
- STC: 27
- T等級相当*: T-0, T-0
- R_w: 27
- $R_{A,2}$: 24

※p11（注4）参照
21. FL3+A12+FL3

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>19.4</td>
</tr>
<tr>
<td>125</td>
<td>17.2</td>
</tr>
<tr>
<td>160</td>
<td>19.5</td>
</tr>
<tr>
<td>200</td>
<td>17.9</td>
</tr>
<tr>
<td>250</td>
<td>16.8</td>
</tr>
<tr>
<td>315</td>
<td>16.6</td>
</tr>
<tr>
<td>400</td>
<td>19.1</td>
</tr>
<tr>
<td>500</td>
<td>22.4</td>
</tr>
<tr>
<td>630</td>
<td>26.1</td>
</tr>
<tr>
<td>800</td>
<td>30.1</td>
</tr>
<tr>
<td>1000</td>
<td>33.7</td>
</tr>
<tr>
<td>1250</td>
<td>36.8</td>
</tr>
<tr>
<td>1600</td>
<td>40.4</td>
</tr>
<tr>
<td>2000</td>
<td>43.4</td>
</tr>
<tr>
<td>2500</td>
<td>44.3</td>
</tr>
<tr>
<td>3150</td>
<td>41.6</td>
</tr>
<tr>
<td>4000</td>
<td>31.2</td>
</tr>
<tr>
<td>5000</td>
<td>34.1</td>
</tr>
</tbody>
</table>

平均値 27
STC 28
T等級相当※ T-0 T-0
Rw 28
R_{A_2} 24
※p11（注4）参照
2. 板ガラスの遮音性能

22. FL3+A6+FL5

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>22.3</td>
</tr>
<tr>
<td>125</td>
<td>21.4 22.2</td>
</tr>
<tr>
<td>160</td>
<td>23.1</td>
</tr>
<tr>
<td>200</td>
<td>23.5</td>
</tr>
<tr>
<td>250</td>
<td>23.8 23.0</td>
</tr>
<tr>
<td>315</td>
<td>22.0</td>
</tr>
<tr>
<td>400</td>
<td>22.1</td>
</tr>
<tr>
<td>500</td>
<td>24.4 24.2</td>
</tr>
<tr>
<td>630</td>
<td>27.7</td>
</tr>
<tr>
<td>800</td>
<td>30.3</td>
</tr>
<tr>
<td>1000</td>
<td>32.5 32.2</td>
</tr>
<tr>
<td>1250</td>
<td>35.0</td>
</tr>
<tr>
<td>1600</td>
<td>36.4</td>
</tr>
<tr>
<td>2000</td>
<td>37.5 36.4</td>
</tr>
<tr>
<td>2500</td>
<td>35.5</td>
</tr>
<tr>
<td>3150</td>
<td>38.4</td>
</tr>
<tr>
<td>4000</td>
<td>39.3 39.4</td>
</tr>
<tr>
<td>5000</td>
<td>41.0</td>
</tr>
</tbody>
</table>

平均値 28
STC 31
T等級相当※ T-1 T-1
Rw 31
R_{A2} 28

※p11（注4）参照
23. FL3+A12+FL5

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>20.9</td>
</tr>
<tr>
<td>125</td>
<td>19.5 20.4</td>
</tr>
<tr>
<td>160</td>
<td>20.9</td>
</tr>
<tr>
<td>200</td>
<td>18.7</td>
</tr>
<tr>
<td>250</td>
<td>17.5 18.6</td>
</tr>
<tr>
<td>315</td>
<td>20.0</td>
</tr>
<tr>
<td>400</td>
<td>23.3</td>
</tr>
<tr>
<td>500</td>
<td>27.9 26.3</td>
</tr>
<tr>
<td>630</td>
<td>31.8</td>
</tr>
<tr>
<td>800</td>
<td>35.2</td>
</tr>
<tr>
<td>1000</td>
<td>38.4 37.6</td>
</tr>
<tr>
<td>1250</td>
<td>41.2</td>
</tr>
<tr>
<td>1600</td>
<td>42.5</td>
</tr>
<tr>
<td>2000</td>
<td>43.4 42.1</td>
</tr>
<tr>
<td>2500</td>
<td>40.8</td>
</tr>
<tr>
<td>3150</td>
<td>42.8</td>
</tr>
<tr>
<td>4000</td>
<td>41.9 42.7</td>
</tr>
<tr>
<td>5000</td>
<td>43.7</td>
</tr>
</tbody>
</table>

平均値	29
STC	32
T等級相当	T-1 T-1
Rw	32
Ra,2	27

※p11（注4）参照
2. 板ガラスの遮音性能

24. FL3+A6+FL6

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>1/3Oct.</th>
<th>Oct.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>21.7</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>21.6</td>
<td>22.0</td>
</tr>
<tr>
<td>160</td>
<td>22.9</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>23.7</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>23.6</td>
<td>23.2</td>
</tr>
<tr>
<td>315</td>
<td>22.3</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>24.0</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>26.3</td>
<td>26.0</td>
</tr>
<tr>
<td>630</td>
<td>28.9</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>32.2</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>34.2</td>
<td>33.8</td>
</tr>
<tr>
<td>1250</td>
<td>35.6</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>36.6</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>36.3</td>
<td>37.1</td>
</tr>
<tr>
<td>2500</td>
<td>38.8</td>
<td></td>
</tr>
<tr>
<td>3150</td>
<td>42.4</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>42.4</td>
<td>42.7</td>
</tr>
<tr>
<td>5000</td>
<td>43.2</td>
<td></td>
</tr>
</tbody>
</table>

平均値 29
STC 32
T等級相当※ T-1 T-1
Rw 32
Ra,2 29
※p11（注4）参照
25. FL4+A6+FL4

周波数（Hz）	音響透過損失(dB)
100 | 22.3 |
125 | 19.6 |
160 | 21.4 |
200 | 23.0 |
250 | 22.0 |
315 | 19.7 |
400 | 19.6 |
500 | 23.2 |
630 | 26.5 |
800 | 30.2 |
1000 | 32.3 |
1250 | 35.3 |
1600 | 37.1 |
2000 | 38.1 |
2500 | 35.7 |
3150 | 29.7 |
4000 | 33.9 |
5000 | 40.8 |

平均値 | 27 |
STC | 29 |
T等級相当 | T-0 | T-1 |
Rw | 29 |
RA2 | 26 |

※p11（注4）参照
2. 板ガラスの遮音性能

26. FL4+A6+FL6

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>22.3</td>
</tr>
<tr>
<td>125</td>
<td>22.0</td>
</tr>
<tr>
<td>160</td>
<td>23.6</td>
</tr>
<tr>
<td>200</td>
<td>24.5</td>
</tr>
<tr>
<td>250</td>
<td>23.1</td>
</tr>
<tr>
<td>315</td>
<td>22.5</td>
</tr>
<tr>
<td>400</td>
<td>23.7</td>
</tr>
<tr>
<td>500</td>
<td>26.2</td>
</tr>
<tr>
<td>630</td>
<td>30.2</td>
</tr>
<tr>
<td>800</td>
<td>33.8</td>
</tr>
<tr>
<td>1000</td>
<td>36.3</td>
</tr>
<tr>
<td>1250</td>
<td>38.2</td>
</tr>
<tr>
<td>1600</td>
<td>38.0</td>
</tr>
<tr>
<td>2000</td>
<td>37.0</td>
</tr>
<tr>
<td>2500</td>
<td>35.1</td>
</tr>
<tr>
<td>3150</td>
<td>36.0</td>
</tr>
<tr>
<td>4000</td>
<td>39.5</td>
</tr>
<tr>
<td>5000</td>
<td>45.2</td>
</tr>
</tbody>
</table>

平均値 29
STC 33
T等級相当※ T-1 T-1
Rw 32
Ra,2 29
※p11（注4）参照
27. FL4+A12+FL6

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>21.7</td>
</tr>
<tr>
<td>125</td>
<td>20.1</td>
</tr>
<tr>
<td>160</td>
<td>21.5</td>
</tr>
<tr>
<td>200</td>
<td>20.1</td>
</tr>
<tr>
<td>250</td>
<td>21.2</td>
</tr>
<tr>
<td>315</td>
<td>21.5</td>
</tr>
<tr>
<td>400</td>
<td>24.0</td>
</tr>
<tr>
<td>500</td>
<td>28.0</td>
</tr>
<tr>
<td>630</td>
<td>32.4</td>
</tr>
<tr>
<td>800</td>
<td>37.5</td>
</tr>
<tr>
<td>1000</td>
<td>40.8</td>
</tr>
<tr>
<td>1250</td>
<td>42.8</td>
</tr>
<tr>
<td>1600</td>
<td>42.6</td>
</tr>
<tr>
<td>2000</td>
<td>41.3</td>
</tr>
<tr>
<td>2500</td>
<td>38.9</td>
</tr>
<tr>
<td>3150</td>
<td>39.1</td>
</tr>
<tr>
<td>4000</td>
<td>42.9</td>
</tr>
<tr>
<td>5000</td>
<td>48.8</td>
</tr>
</tbody>
</table>

平均値 31
STC 34
T等級相当 T-1 T-1
Rw 34
R_{a,2} 29

※p11（注4）参照
2. 板ガラスの遮音性能

28. FL4+A6+FL8

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>25.2</td>
</tr>
<tr>
<td>125</td>
<td>20.8 22.8</td>
</tr>
<tr>
<td>160</td>
<td>23.7</td>
</tr>
<tr>
<td>200</td>
<td>24.2</td>
</tr>
<tr>
<td>250</td>
<td>22.0 23.1</td>
</tr>
<tr>
<td>315</td>
<td>23.4</td>
</tr>
<tr>
<td>400</td>
<td>26.8</td>
</tr>
<tr>
<td>500</td>
<td>30.0 29.3</td>
</tr>
<tr>
<td>630</td>
<td>33.3</td>
</tr>
<tr>
<td>800</td>
<td>36.2</td>
</tr>
<tr>
<td>1000</td>
<td>37.5 36.6</td>
</tr>
<tr>
<td>1250</td>
<td>36.1</td>
</tr>
<tr>
<td>1600</td>
<td>37.3</td>
</tr>
<tr>
<td>2000</td>
<td>39.4 39.1</td>
</tr>
<tr>
<td>2500</td>
<td>41.8</td>
</tr>
<tr>
<td>3150</td>
<td>40.5</td>
</tr>
<tr>
<td>4000</td>
<td>42.2 42.6</td>
</tr>
<tr>
<td>5000</td>
<td>47.9</td>
</tr>
</tbody>
</table>

平均値 31
STC 34
T等級相当※ T-2 T-2
Rw 34
R\text{A}_2 30
※p11（注4）参照
29. FL5+A6+FL5

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>22.5</td>
</tr>
<tr>
<td>125</td>
<td>21.8</td>
</tr>
<tr>
<td>160</td>
<td>22.3</td>
</tr>
<tr>
<td>200</td>
<td>23.4</td>
</tr>
<tr>
<td>250</td>
<td>22.0</td>
</tr>
<tr>
<td>315</td>
<td>19.7</td>
</tr>
<tr>
<td>400</td>
<td>22.3</td>
</tr>
<tr>
<td>500</td>
<td>25.0</td>
</tr>
<tr>
<td>630</td>
<td>29.1</td>
</tr>
<tr>
<td>800</td>
<td>32.3</td>
</tr>
<tr>
<td>1000</td>
<td>34.0</td>
</tr>
<tr>
<td>1250</td>
<td>36.0</td>
</tr>
<tr>
<td>1600</td>
<td>36.8</td>
</tr>
<tr>
<td>2000</td>
<td>35.6</td>
</tr>
<tr>
<td>2500</td>
<td>30.7</td>
</tr>
<tr>
<td>3150</td>
<td>34.0</td>
</tr>
<tr>
<td>4000</td>
<td>38.4</td>
</tr>
<tr>
<td>5000</td>
<td>43.4</td>
</tr>
</tbody>
</table>

平均値 28
STC 31
T等級相当 T-1 T-1
Rw 31
R_{a,2} 27

※p11（注4）参照
2. 板ガラスの遮音性能

30. FL5+A12+FL5

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>21.1</td>
</tr>
<tr>
<td>125</td>
<td>20.4</td>
</tr>
<tr>
<td>160</td>
<td>19.3</td>
</tr>
<tr>
<td>200</td>
<td>17.1</td>
</tr>
<tr>
<td>250</td>
<td>15.9</td>
</tr>
<tr>
<td>315</td>
<td>21.5</td>
</tr>
<tr>
<td>400</td>
<td>25.0</td>
</tr>
<tr>
<td>500</td>
<td>28.4</td>
</tr>
<tr>
<td>630</td>
<td>31.8</td>
</tr>
<tr>
<td>800</td>
<td>35.2</td>
</tr>
<tr>
<td>1000</td>
<td>38.0</td>
</tr>
<tr>
<td>1250</td>
<td>39.7</td>
</tr>
<tr>
<td>1600</td>
<td>40.0</td>
</tr>
<tr>
<td>2000</td>
<td>38.4</td>
</tr>
<tr>
<td>2500</td>
<td>33.8</td>
</tr>
<tr>
<td>3150</td>
<td>37.1</td>
</tr>
<tr>
<td>4000</td>
<td>42.2</td>
</tr>
<tr>
<td>5000</td>
<td>47.5</td>
</tr>
</tbody>
</table>

平均値 28
STC 31
T等級相当※ T-1 T-1
Rw 31
R_A,2 26

※p11（注4）参照
31. FL5+A12+PW6.8

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>21.7</td>
</tr>
<tr>
<td>125</td>
<td>19.0 20.0</td>
</tr>
<tr>
<td>160</td>
<td>19.7</td>
</tr>
<tr>
<td>200</td>
<td>20.8</td>
</tr>
<tr>
<td>250</td>
<td>21.0 22.1</td>
</tr>
<tr>
<td>315</td>
<td>26.2</td>
</tr>
<tr>
<td>400</td>
<td>31.2</td>
</tr>
<tr>
<td>500</td>
<td>33.1 33.1</td>
</tr>
<tr>
<td>630</td>
<td>36.3</td>
</tr>
<tr>
<td>800</td>
<td>39.6</td>
</tr>
<tr>
<td>1000</td>
<td>41.1 40.8</td>
</tr>
<tr>
<td>1250</td>
<td>42.2</td>
</tr>
<tr>
<td>1600</td>
<td>39.7</td>
</tr>
<tr>
<td>2000</td>
<td>38.3 37.7</td>
</tr>
<tr>
<td>2500</td>
<td>35.9</td>
</tr>
<tr>
<td>3150</td>
<td>40.0</td>
</tr>
<tr>
<td>4000</td>
<td>44.3 43.0</td>
</tr>
<tr>
<td>5000</td>
<td>49.4</td>
</tr>
</tbody>
</table>

平均値 31
STC 35
T等級相当 T-2 T-2
Rw 35
Ra.2 30
※p11（注4）参照
2. 板ガラスの遮音性能

32. FL5+A6+FL8

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>25.9</td>
</tr>
<tr>
<td>125</td>
<td>22.6 24.0</td>
</tr>
<tr>
<td>160</td>
<td>24.0</td>
</tr>
<tr>
<td>200</td>
<td>24.6</td>
</tr>
<tr>
<td>250</td>
<td>25.2 24.8</td>
</tr>
<tr>
<td>315</td>
<td>24.5</td>
</tr>
<tr>
<td>400</td>
<td>26.8</td>
</tr>
<tr>
<td>500</td>
<td>28.1 28.5</td>
</tr>
<tr>
<td>630</td>
<td>32.1</td>
</tr>
<tr>
<td>800</td>
<td>35.9</td>
</tr>
<tr>
<td>1000</td>
<td>37.5 36.3</td>
</tr>
<tr>
<td>1250</td>
<td>35.6</td>
</tr>
<tr>
<td>1600</td>
<td>35.8</td>
</tr>
<tr>
<td>2000</td>
<td>36.9 36.9</td>
</tr>
<tr>
<td>2500</td>
<td>38.3</td>
</tr>
<tr>
<td>3150</td>
<td>40.2</td>
</tr>
<tr>
<td>4000</td>
<td>43.0 42.6</td>
</tr>
<tr>
<td>5000</td>
<td>47.4</td>
</tr>
</tbody>
</table>

平均値 30
STC 34
T等級相当 34
Rw T-2 T-2
Ra T-2

※p11（注4）参照
33. FL5+A6+FL10

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
<th>1/3Oct.</th>
<th>Oct.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>26.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>24.6</td>
<td>25.4</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>25.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>26.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>26.5</td>
<td>25.9</td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>24.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>28.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>30.5</td>
<td>30.5</td>
<td></td>
</tr>
<tr>
<td>630</td>
<td>34.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>36.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>35.5</td>
<td>35.8</td>
<td></td>
</tr>
<tr>
<td>1250</td>
<td>35.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>37.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>41.0</td>
<td>39.4</td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td>40.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3150</td>
<td>41.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>44.7</td>
<td>44.1</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>49.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

平均値 32
STC 35
T等級相当※ T-2 T-2
R_w 35
R_{A,2} 32

※p11（注4）参照
34. FL6+A6+FL6

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>22.4</td>
</tr>
<tr>
<td>125</td>
<td>22.0</td>
</tr>
<tr>
<td>160</td>
<td>23.5</td>
</tr>
<tr>
<td>200</td>
<td>22.7</td>
</tr>
<tr>
<td>250</td>
<td>20.9</td>
</tr>
<tr>
<td>315</td>
<td>22.4</td>
</tr>
<tr>
<td>400</td>
<td>23.9</td>
</tr>
<tr>
<td>500</td>
<td>27.4</td>
</tr>
<tr>
<td>630</td>
<td>30.6</td>
</tr>
<tr>
<td>800</td>
<td>34.2</td>
</tr>
<tr>
<td>1000</td>
<td>36.0</td>
</tr>
<tr>
<td>1250</td>
<td>35.8</td>
</tr>
<tr>
<td>1600</td>
<td>35.3</td>
</tr>
<tr>
<td>2000</td>
<td>33.0</td>
</tr>
<tr>
<td>2500</td>
<td>34.0</td>
</tr>
<tr>
<td>3150</td>
<td>38.6</td>
</tr>
<tr>
<td>4000</td>
<td>42.4</td>
</tr>
<tr>
<td>5000</td>
<td>47.4</td>
</tr>
</tbody>
</table>

平均値 28
STC 32
T等級相当 T-1 T-1
R_w 32
R_{A,2} 28

※p11（注4）参照
35. FL6+A12+FL10

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>24.9</td>
</tr>
<tr>
<td>125</td>
<td>21.6</td>
</tr>
<tr>
<td>160</td>
<td>23.4</td>
</tr>
<tr>
<td>200</td>
<td>24.5</td>
</tr>
<tr>
<td>250</td>
<td>28.7</td>
</tr>
<tr>
<td>315</td>
<td>29.5</td>
</tr>
<tr>
<td>400</td>
<td>33.3</td>
</tr>
<tr>
<td>500</td>
<td>34.5</td>
</tr>
<tr>
<td>630</td>
<td>37.7</td>
</tr>
<tr>
<td>800</td>
<td>40.4</td>
</tr>
<tr>
<td>1000</td>
<td>40.3</td>
</tr>
<tr>
<td>1250</td>
<td>39.9</td>
</tr>
<tr>
<td>1600</td>
<td>39.9</td>
</tr>
<tr>
<td>2000</td>
<td>39.6</td>
</tr>
<tr>
<td>2500</td>
<td>39.9</td>
</tr>
<tr>
<td>3150</td>
<td>43.7</td>
</tr>
<tr>
<td>4000</td>
<td>47.5</td>
</tr>
<tr>
<td>5000</td>
<td>51.3</td>
</tr>
</tbody>
</table>

平均値 33
STC 38
T等級相当※ T-3 T-3
Rw 38
R_{A2} 33

※p11（注4）参照
2. 板ガラスの遮音性能

36. FL6+A6+FL12

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>27.5</td>
</tr>
<tr>
<td>125</td>
<td>25.8</td>
</tr>
<tr>
<td>160</td>
<td>26.6</td>
</tr>
<tr>
<td>200</td>
<td>26.1</td>
</tr>
<tr>
<td>250</td>
<td>25.6</td>
</tr>
<tr>
<td>315</td>
<td>27.6</td>
</tr>
<tr>
<td>400</td>
<td>28.8</td>
</tr>
<tr>
<td>500</td>
<td>31.6</td>
</tr>
<tr>
<td>630</td>
<td>35.6</td>
</tr>
<tr>
<td>800</td>
<td>38.2</td>
</tr>
<tr>
<td>1000</td>
<td>39.5</td>
</tr>
<tr>
<td>1250</td>
<td>37.5</td>
</tr>
<tr>
<td>1600</td>
<td>39.0</td>
</tr>
<tr>
<td>2000</td>
<td>38.5</td>
</tr>
<tr>
<td>2500</td>
<td>40.8</td>
</tr>
<tr>
<td>3150</td>
<td>44.2</td>
</tr>
<tr>
<td>4000</td>
<td>47.5</td>
</tr>
<tr>
<td>5000</td>
<td>52.6</td>
</tr>
</tbody>
</table>

平均値 33 STC 37 T等級相当※ T-2 T-2 Rw 36 Ra,2 33
※p11（注4）参照
37. FL6+A12+FL12

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>26.3</td>
</tr>
<tr>
<td>125</td>
<td>20.1 22.7</td>
</tr>
<tr>
<td>160</td>
<td>24.1</td>
</tr>
<tr>
<td>200</td>
<td>24.8</td>
</tr>
<tr>
<td>250</td>
<td>27.8 26.7</td>
</tr>
<tr>
<td>315</td>
<td>28.2</td>
</tr>
<tr>
<td>400</td>
<td>32.2</td>
</tr>
<tr>
<td>500</td>
<td>34.8 34.5</td>
</tr>
<tr>
<td>630</td>
<td>38.7</td>
</tr>
<tr>
<td>800</td>
<td>41.1</td>
</tr>
<tr>
<td>1000</td>
<td>39.4 40.0</td>
</tr>
<tr>
<td>1250</td>
<td>39.7</td>
</tr>
<tr>
<td>1600</td>
<td>41.6</td>
</tr>
<tr>
<td>2000</td>
<td>41.5 41.5</td>
</tr>
<tr>
<td>2500</td>
<td>41.3</td>
</tr>
<tr>
<td>3150</td>
<td>44.0</td>
</tr>
<tr>
<td>4000</td>
<td>46.7 46.4</td>
</tr>
<tr>
<td>5000</td>
<td>50.8</td>
</tr>
</tbody>
</table>

平均値 33
STC 38
T等級相当※ T-3 T-3
Rw 38
R_an,2 33
※p11（注4）参照
2. 板ガラスの遮音性能

38. FL8+A12+FL8

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>23.6</td>
</tr>
<tr>
<td>125</td>
<td>21.1</td>
</tr>
<tr>
<td>160</td>
<td>17.1</td>
</tr>
<tr>
<td>200</td>
<td>19.9</td>
</tr>
<tr>
<td>250</td>
<td>22.1</td>
</tr>
<tr>
<td>315</td>
<td>25.2</td>
</tr>
<tr>
<td>400</td>
<td>28.1</td>
</tr>
<tr>
<td>500</td>
<td>31.9</td>
</tr>
<tr>
<td>630</td>
<td>34.7</td>
</tr>
<tr>
<td>800</td>
<td>37.0</td>
</tr>
<tr>
<td>1000</td>
<td>37.4</td>
</tr>
<tr>
<td>1250</td>
<td>35.1</td>
</tr>
<tr>
<td>1600</td>
<td>34.5</td>
</tr>
<tr>
<td>2000</td>
<td>34.5</td>
</tr>
<tr>
<td>2500</td>
<td>37.8</td>
</tr>
<tr>
<td>3150</td>
<td>42.0</td>
</tr>
<tr>
<td>4000</td>
<td>45.4</td>
</tr>
<tr>
<td>5000</td>
<td>49.6</td>
</tr>
</tbody>
</table>

平均値 29
STC 33
T等級相当 T-2 T-2
\(R_w\) 33
\(R_{a,2}\) 29

※p11（注4）参照
39. FL8+A6+FL12

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>1/3Oct.</th>
<th>Oct.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>27.8</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>25.1</td>
<td>26.2</td>
</tr>
<tr>
<td>160</td>
<td>26.2</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>25.8</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>28.2</td>
<td>27.9</td>
</tr>
<tr>
<td>315</td>
<td>31.3</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>33.7</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>36.1</td>
<td>35.5</td>
</tr>
<tr>
<td>630</td>
<td>37.5</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>38.3</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>38.8</td>
<td>36.3</td>
</tr>
<tr>
<td>1250</td>
<td>33.8</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>35.5</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>39.7</td>
<td>38.4</td>
</tr>
<tr>
<td>2500</td>
<td>43.1</td>
<td></td>
</tr>
<tr>
<td>3150</td>
<td>47.1</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>50.3</td>
<td>49.7</td>
</tr>
<tr>
<td>5000</td>
<td>54.4</td>
<td></td>
</tr>
</tbody>
</table>

平均値 33
STC 37
T等級相当※ T-3 T-3
Rw 37
RA,2 34
※p11（注4）参照
2. 板ガラスの遮音性能

40. FL8+A12+FL12

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>24.6</td>
</tr>
<tr>
<td>125</td>
<td>23.0</td>
</tr>
<tr>
<td>160</td>
<td>24.4</td>
</tr>
<tr>
<td>200</td>
<td>28.9</td>
</tr>
<tr>
<td>250</td>
<td>31.9</td>
</tr>
<tr>
<td>315</td>
<td>34.4</td>
</tr>
<tr>
<td>400</td>
<td>37.0</td>
</tr>
<tr>
<td>500</td>
<td>38.2</td>
</tr>
<tr>
<td>630</td>
<td>39.4</td>
</tr>
<tr>
<td>800</td>
<td>40.5</td>
</tr>
<tr>
<td>1000</td>
<td>40.2</td>
</tr>
<tr>
<td>1250</td>
<td>33.7</td>
</tr>
<tr>
<td>1600</td>
<td>35.8</td>
</tr>
<tr>
<td>2000</td>
<td>39.5</td>
</tr>
<tr>
<td>2500</td>
<td>43.1</td>
</tr>
<tr>
<td>3150</td>
<td>47.2</td>
</tr>
<tr>
<td>4000</td>
<td>49.7</td>
</tr>
<tr>
<td>5000</td>
<td>52.9</td>
</tr>
</tbody>
</table>

periodic table

<table>
<thead>
<tr>
<th>平均値</th>
<th>STC</th>
<th>T等級相当</th>
<th>Rw</th>
<th>RA,2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>34</td>
<td>38</td>
<td>39</td>
<td>34</td>
</tr>
</tbody>
</table>

※p11（注4）参照
2.5 二重窓形式の音響透過損失データ

41. FL3+A50+FL6

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10.9</td>
</tr>
<tr>
<td>125</td>
<td>14.0</td>
</tr>
<tr>
<td>160</td>
<td>17.3</td>
</tr>
<tr>
<td>200</td>
<td>22.4</td>
</tr>
<tr>
<td>250</td>
<td>28.1</td>
</tr>
<tr>
<td>315</td>
<td>27.7</td>
</tr>
<tr>
<td>400</td>
<td>31.5</td>
</tr>
<tr>
<td>500</td>
<td>35.3</td>
</tr>
<tr>
<td>630</td>
<td>39.0</td>
</tr>
<tr>
<td>800</td>
<td>42.7</td>
</tr>
<tr>
<td>1000</td>
<td>46.3</td>
</tr>
<tr>
<td>1250</td>
<td>46.9</td>
</tr>
<tr>
<td>1600</td>
<td>44.5</td>
</tr>
<tr>
<td>2000</td>
<td>45.2</td>
</tr>
<tr>
<td>2500</td>
<td>47.4</td>
</tr>
<tr>
<td>3150</td>
<td>55.0</td>
</tr>
<tr>
<td>4000</td>
<td>52.6</td>
</tr>
<tr>
<td>5000</td>
<td>55.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3Oct.</td>
<td>13.3</td>
</tr>
<tr>
<td>Oct.</td>
<td>15.9</td>
</tr>
</tbody>
</table>

平均値 33
STC 37
T等級相当※ T-2 T-2
Rw 36
RA,2 27

※p11（注4）参照
2. 板ガラスの遮音性能

42. FL3+A100+FL6

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>1/3Oct.</th>
<th>Oct.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>24.2</td>
<td>19.2</td>
</tr>
<tr>
<td>160</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>30.1</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>33.0</td>
<td>31.7</td>
</tr>
<tr>
<td>315</td>
<td>32.7</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>35.4</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>38.3</td>
<td>37.7</td>
</tr>
<tr>
<td>630</td>
<td>41.4</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>46.6</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>53.2</td>
<td>50.2</td>
</tr>
<tr>
<td>1250</td>
<td>56.7</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>57.0</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>52.8</td>
<td>54.3</td>
</tr>
<tr>
<td>2500</td>
<td>54.1</td>
<td></td>
</tr>
<tr>
<td>3150</td>
<td>53.7</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>55.5</td>
<td>55.4</td>
</tr>
<tr>
<td>5000</td>
<td>57.8</td>
<td></td>
</tr>
</tbody>
</table>

平均值 40
STC 42
T等級相当※ T-3 T-3
Rw 41
RA,2 33
※p11（注4）参照
43. FL5+A50+FL8

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>17.2</td>
</tr>
<tr>
<td>125</td>
<td>24.5</td>
</tr>
<tr>
<td>160</td>
<td>23.8</td>
</tr>
<tr>
<td>200</td>
<td>32.2</td>
</tr>
<tr>
<td>250</td>
<td>32.9</td>
</tr>
<tr>
<td>315</td>
<td>33.5</td>
</tr>
<tr>
<td>400</td>
<td>34.4</td>
</tr>
<tr>
<td>500</td>
<td>38.6</td>
</tr>
<tr>
<td>630</td>
<td>42.9</td>
</tr>
<tr>
<td>800</td>
<td>46.7</td>
</tr>
<tr>
<td>1000</td>
<td>48.9</td>
</tr>
<tr>
<td>1250</td>
<td>46.4</td>
</tr>
<tr>
<td>1600</td>
<td>45.5</td>
</tr>
<tr>
<td>2000</td>
<td>46.9</td>
</tr>
<tr>
<td>2500</td>
<td>51.9</td>
</tr>
<tr>
<td>3150</td>
<td>58.4</td>
</tr>
<tr>
<td>4000</td>
<td>59.6</td>
</tr>
<tr>
<td>5000</td>
<td>61.2</td>
</tr>
</tbody>
</table>

平均値 38
STC 43
T等級相当※ T-3 T-3
Rw 42
Ra,2 34
※p11（注4）参照
2. 板ガラスの遮音性能

44. FL5+A100+FL8

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>25.2</td>
</tr>
<tr>
<td>125</td>
<td>29.3</td>
</tr>
<tr>
<td>160</td>
<td>28.8</td>
</tr>
<tr>
<td>200</td>
<td>35.5</td>
</tr>
<tr>
<td>250</td>
<td>36.8</td>
</tr>
<tr>
<td>315</td>
<td>38.0</td>
</tr>
<tr>
<td>400</td>
<td>38.7</td>
</tr>
<tr>
<td>500</td>
<td>42.0</td>
</tr>
<tr>
<td>630</td>
<td>46.1</td>
</tr>
<tr>
<td>800</td>
<td>50.9</td>
</tr>
<tr>
<td>1000</td>
<td>55.0</td>
</tr>
<tr>
<td>1250</td>
<td>54.4</td>
</tr>
<tr>
<td>1600</td>
<td>52.8</td>
</tr>
<tr>
<td>2000</td>
<td>55.9</td>
</tr>
<tr>
<td>2500</td>
<td>51.1</td>
</tr>
<tr>
<td>3150</td>
<td>58.7</td>
</tr>
<tr>
<td>4000</td>
<td>65.8</td>
</tr>
<tr>
<td>5000</td>
<td>68.8</td>
</tr>
</tbody>
</table>

平均値	43
STC	47
T等級相当(※)	T-4 T-4
Rw	46
R_A2	40

※p11（注4）参照
45. FL5+A200+FL8

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>周波数 (1/3Oct. Oct.)</th>
<th>音響透過損失 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
<td>32.6</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>29.8 31.1</td>
</tr>
<tr>
<td>160</td>
<td></td>
<td>31.4</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>37.0</td>
</tr>
<tr>
<td>250</td>
<td></td>
<td>40.0 39.3</td>
</tr>
<tr>
<td>315</td>
<td></td>
<td>42.9</td>
</tr>
<tr>
<td>400</td>
<td></td>
<td>44.5</td>
</tr>
<tr>
<td>500</td>
<td></td>
<td>46.7 46.5</td>
</tr>
<tr>
<td>630</td>
<td></td>
<td>49.6</td>
</tr>
<tr>
<td>800</td>
<td></td>
<td>52.8</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>54.0 53.2</td>
</tr>
<tr>
<td>1250</td>
<td></td>
<td>52.9</td>
</tr>
<tr>
<td>1600</td>
<td></td>
<td>51.2</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>51.8 51.5</td>
</tr>
<tr>
<td>2500</td>
<td></td>
<td>51.5</td>
</tr>
<tr>
<td>3150</td>
<td></td>
<td>62.7</td>
</tr>
<tr>
<td>4000</td>
<td></td>
<td>66.6 65.6</td>
</tr>
<tr>
<td>5000</td>
<td></td>
<td>71.2</td>
</tr>
</tbody>
</table>

平均値 45
STC 49
T等級相当※ T-5 T-5
Rw 49
Ra,2 43
※p11（注4）参照
2. 板ガラスの遮音性能

46. FL5+A50+複層(FL3+A6+FL6)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>15.0</td>
</tr>
<tr>
<td>125</td>
<td>25.8</td>
</tr>
<tr>
<td>160</td>
<td>25.2</td>
</tr>
<tr>
<td>200</td>
<td>31.1</td>
</tr>
<tr>
<td>250</td>
<td>35.5</td>
</tr>
<tr>
<td>315</td>
<td>33.9</td>
</tr>
<tr>
<td>400</td>
<td>37.2</td>
</tr>
<tr>
<td>500</td>
<td>39.7</td>
</tr>
<tr>
<td>630</td>
<td>42.9</td>
</tr>
<tr>
<td>800</td>
<td>47.8</td>
</tr>
<tr>
<td>1000</td>
<td>51.4</td>
</tr>
<tr>
<td>1250</td>
<td>51.4</td>
</tr>
<tr>
<td>1600</td>
<td>49.3</td>
</tr>
<tr>
<td>2000</td>
<td>46.0</td>
</tr>
<tr>
<td>2500</td>
<td>47.1</td>
</tr>
<tr>
<td>3150</td>
<td>56.1</td>
</tr>
<tr>
<td>4000</td>
<td>59.7</td>
</tr>
<tr>
<td>5000</td>
<td>63.6</td>
</tr>
</tbody>
</table>

平均値 39
STC 43
T等級相当※ T-3 T-4
Rw 42
RA,2 33
※p11（注4）参照
47. FL5+A100+複層(FL3+A6+FL6)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>26.3</td>
</tr>
<tr>
<td>125</td>
<td>27.4</td>
</tr>
<tr>
<td>160</td>
<td>28.7</td>
</tr>
<tr>
<td>200</td>
<td>37.0</td>
</tr>
<tr>
<td>250</td>
<td>39.3</td>
</tr>
<tr>
<td>315</td>
<td>39.0</td>
</tr>
<tr>
<td>400</td>
<td>40.9</td>
</tr>
<tr>
<td>500</td>
<td>43.6</td>
</tr>
<tr>
<td>630</td>
<td>48.0</td>
</tr>
<tr>
<td>800</td>
<td>53.3</td>
</tr>
<tr>
<td>1000</td>
<td>58.9</td>
</tr>
<tr>
<td>1250</td>
<td>61.1</td>
</tr>
<tr>
<td>1600</td>
<td>60.7</td>
</tr>
<tr>
<td>2000</td>
<td>57.4</td>
</tr>
<tr>
<td>2500</td>
<td>55.2</td>
</tr>
<tr>
<td>3150</td>
<td>60.4</td>
</tr>
<tr>
<td>4000</td>
<td>63.8</td>
</tr>
<tr>
<td>5000</td>
<td>65.6</td>
</tr>
</tbody>
</table>

平均値 45
STC 48
T等級相当※ T-4 T-4
Rw 47
R_{A,2} 41
※p11（注4）参照
48. FL5+A200+複層(FL3+A6+FL6)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>32.3</td>
</tr>
<tr>
<td>125</td>
<td>29.8</td>
</tr>
<tr>
<td>160</td>
<td>32.6</td>
</tr>
<tr>
<td>200</td>
<td>39.3</td>
</tr>
<tr>
<td>250</td>
<td>39.3</td>
</tr>
<tr>
<td>315</td>
<td>42.9</td>
</tr>
<tr>
<td>400</td>
<td>44.3</td>
</tr>
<tr>
<td>500</td>
<td>47.9</td>
</tr>
<tr>
<td>630</td>
<td>51.4</td>
</tr>
<tr>
<td>800</td>
<td>56.0</td>
</tr>
<tr>
<td>1000</td>
<td>59.3</td>
</tr>
<tr>
<td>1250</td>
<td>61.5</td>
</tr>
<tr>
<td>1600</td>
<td>60.5</td>
</tr>
<tr>
<td>2000</td>
<td>56.7</td>
</tr>
<tr>
<td>2500</td>
<td>55.2</td>
</tr>
<tr>
<td>3150</td>
<td>61.7</td>
</tr>
<tr>
<td>4000</td>
<td>64.4</td>
</tr>
<tr>
<td>5000</td>
<td>67.2</td>
</tr>
</tbody>
</table>

平均値: 47
STC: 51
T等級相当: T-5 T-5
Rw: 51
R_{A2}: 44

※p11（注4）参照
2.6 合わせ複層ガラスの音響透過損失データ

49. FL3+A6+合わせ（FL3+PVB30+FL3）

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>20.7</td>
</tr>
<tr>
<td>125</td>
<td>21.5</td>
</tr>
<tr>
<td>160</td>
<td>23.0</td>
</tr>
<tr>
<td>200</td>
<td>23.1</td>
</tr>
<tr>
<td>250</td>
<td>25.2</td>
</tr>
<tr>
<td>315</td>
<td>23.8</td>
</tr>
<tr>
<td>400</td>
<td>24.1</td>
</tr>
<tr>
<td>500</td>
<td>26.1</td>
</tr>
<tr>
<td>630</td>
<td>29.1</td>
</tr>
<tr>
<td>800</td>
<td>33.2</td>
</tr>
<tr>
<td>1000</td>
<td>35.8</td>
</tr>
<tr>
<td>1250</td>
<td>38.0</td>
</tr>
<tr>
<td>1600</td>
<td>39.7</td>
</tr>
<tr>
<td>2000</td>
<td>40.1</td>
</tr>
<tr>
<td>2500</td>
<td>41.6</td>
</tr>
<tr>
<td>3150</td>
<td>48.3</td>
</tr>
<tr>
<td>4000</td>
<td>50.6</td>
</tr>
<tr>
<td>5000</td>
<td>52.7</td>
</tr>
</tbody>
</table>

平均値 30
STC 33
T等級相当 T-1 T-1
Rw 33
Ra,2 29

※p11（注4）参照
50. FL3+A12+合わせ（FL3+PVB30+FL3）

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>1/3Oct.</th>
<th>Oct.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>20.2</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>20.8</td>
<td>20.7</td>
</tr>
<tr>
<td>160</td>
<td>21.3</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>18.5</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>19.7</td>
<td>19.9</td>
</tr>
<tr>
<td>315</td>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>24.8</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>28.0</td>
<td>27.3</td>
</tr>
<tr>
<td>630</td>
<td>31.3</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>35.9</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>39.2</td>
<td>38.2</td>
</tr>
<tr>
<td>1250</td>
<td>41.3</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>42.7</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>42.8</td>
<td>43.1</td>
</tr>
<tr>
<td>2500</td>
<td>44.0</td>
<td></td>
</tr>
<tr>
<td>3150</td>
<td>49.4</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>49.8</td>
<td>50.0</td>
</tr>
<tr>
<td>5000</td>
<td>51.1</td>
<td></td>
</tr>
</tbody>
</table>

平均値：30
STC：33
T等級相当（p11）：T-1 T-1
R_w：32
R_a,2：28
※p11（注4）参照
51. FL4+A6+合わせ(FL3+PVB30+FL3)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>21.2</td>
</tr>
<tr>
<td>125</td>
<td>22.7</td>
</tr>
<tr>
<td>160</td>
<td>23.4</td>
</tr>
<tr>
<td>200</td>
<td>24.0</td>
</tr>
<tr>
<td>250</td>
<td>25.1</td>
</tr>
<tr>
<td>315</td>
<td>23.6</td>
</tr>
<tr>
<td>400</td>
<td>24.1</td>
</tr>
<tr>
<td>500</td>
<td>26.8</td>
</tr>
<tr>
<td>630</td>
<td>30.5</td>
</tr>
<tr>
<td>800</td>
<td>34.7</td>
</tr>
<tr>
<td>1000</td>
<td>37.5</td>
</tr>
<tr>
<td>1250</td>
<td>39.6</td>
</tr>
<tr>
<td>1600</td>
<td>40.2</td>
</tr>
<tr>
<td>2000</td>
<td>39.6</td>
</tr>
<tr>
<td>2500</td>
<td>38.8</td>
</tr>
<tr>
<td>3150</td>
<td>41.2</td>
</tr>
<tr>
<td>4000</td>
<td>46.4</td>
</tr>
<tr>
<td>5000</td>
<td>51.9</td>
</tr>
</tbody>
</table>

平均値 30
STC 33
T等級相当 T-1 T-1
Rw 34
Ra,2 30

※p11（注4）参照
2. 板ガラスの遮音性能

52. FL4+A12+合わせ（FL3+PVB30+FL3）

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>20.9</td>
</tr>
<tr>
<td>125</td>
<td>21.1</td>
</tr>
<tr>
<td>160</td>
<td>21.8</td>
</tr>
<tr>
<td>200</td>
<td>19.8</td>
</tr>
<tr>
<td>250</td>
<td>21.2</td>
</tr>
<tr>
<td>315</td>
<td>23.8</td>
</tr>
<tr>
<td>400</td>
<td>25.4</td>
</tr>
<tr>
<td>500</td>
<td>29.1</td>
</tr>
<tr>
<td>630</td>
<td>33.3</td>
</tr>
<tr>
<td>800</td>
<td>38.2</td>
</tr>
<tr>
<td>1000</td>
<td>41.5</td>
</tr>
<tr>
<td>1250</td>
<td>43.6</td>
</tr>
<tr>
<td>1600</td>
<td>43.9</td>
</tr>
<tr>
<td>2000</td>
<td>42.9</td>
</tr>
<tr>
<td>2500</td>
<td>41.7</td>
</tr>
<tr>
<td>3150</td>
<td>43.3</td>
</tr>
<tr>
<td>4000</td>
<td>48.5</td>
</tr>
<tr>
<td>5000</td>
<td>53.5</td>
</tr>
</tbody>
</table>

平均値 31
STC 34
T等級相当※ T-1 T-1
Rw 34
Rₜ₂ 29
※p11（注4）参照
53. FL5+A6+合わせ(FL3+PVB30+FL3)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>21.9</td>
</tr>
<tr>
<td>125</td>
<td>23.1</td>
</tr>
<tr>
<td>160</td>
<td>24.1</td>
</tr>
<tr>
<td>200</td>
<td>24.4</td>
</tr>
<tr>
<td>250</td>
<td>25.1</td>
</tr>
<tr>
<td>315</td>
<td>24.5</td>
</tr>
<tr>
<td>400</td>
<td>27.3</td>
</tr>
<tr>
<td>500</td>
<td>29.8</td>
</tr>
<tr>
<td>630</td>
<td>33.4</td>
</tr>
<tr>
<td>800</td>
<td>36.8</td>
</tr>
<tr>
<td>1000</td>
<td>39.0</td>
</tr>
<tr>
<td>1250</td>
<td>40.8</td>
</tr>
<tr>
<td>1600</td>
<td>40.2</td>
</tr>
<tr>
<td>2000</td>
<td>37.4</td>
</tr>
<tr>
<td>2500</td>
<td>35.3</td>
</tr>
<tr>
<td>3150</td>
<td>41.6</td>
</tr>
<tr>
<td>4000</td>
<td>47.4</td>
</tr>
<tr>
<td>5000</td>
<td>52.9</td>
</tr>
</tbody>
</table>

平均値 31
STC 35
T等級相当※ T-2 T-2
R_w 35
R_a,2 31
※p11（注4）参照
54. FL5+A12+合わせ(FL3+PVB30+FL3)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>20.8</td>
</tr>
<tr>
<td>125</td>
<td>20.0</td>
</tr>
<tr>
<td>160</td>
<td>20.2</td>
</tr>
<tr>
<td>200</td>
<td>19.9</td>
</tr>
<tr>
<td>250</td>
<td>20.3</td>
</tr>
<tr>
<td>315</td>
<td>25.7</td>
</tr>
<tr>
<td>400</td>
<td>29.0</td>
</tr>
<tr>
<td>500</td>
<td>32.3</td>
</tr>
<tr>
<td>630</td>
<td>35.8</td>
</tr>
<tr>
<td>800</td>
<td>39.9</td>
</tr>
<tr>
<td>1000</td>
<td>42.3</td>
</tr>
<tr>
<td>1250</td>
<td>44.0</td>
</tr>
<tr>
<td>1600</td>
<td>42.7</td>
</tr>
<tr>
<td>2000</td>
<td>39.3</td>
</tr>
<tr>
<td>2500</td>
<td>37.5</td>
</tr>
<tr>
<td>3150</td>
<td>42.6</td>
</tr>
<tr>
<td>4000</td>
<td>48.4</td>
</tr>
<tr>
<td>5000</td>
<td>53.5</td>
</tr>
</tbody>
</table>

平均値 31
STC 35
T等級相当※ T-2 T-2
Rw 35
Ra,2 29
※p11（注4）参照
55. PW6.8+A6+合わせ(FL3+PVB30+FL3)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>22.6</td>
</tr>
<tr>
<td>125</td>
<td>22.5 23.1</td>
</tr>
<tr>
<td>160</td>
<td>24.3</td>
</tr>
<tr>
<td>200</td>
<td>22.6</td>
</tr>
<tr>
<td>250</td>
<td>23.5 23.4</td>
</tr>
<tr>
<td>315</td>
<td>24.1</td>
</tr>
<tr>
<td>400</td>
<td>26.2</td>
</tr>
<tr>
<td>500</td>
<td>30.1 29.0</td>
</tr>
<tr>
<td>630</td>
<td>34.1</td>
</tr>
<tr>
<td>800</td>
<td>38.2</td>
</tr>
<tr>
<td>1000</td>
<td>40.0 39.5</td>
</tr>
<tr>
<td>1250</td>
<td>40.7</td>
</tr>
<tr>
<td>1600</td>
<td>38.5</td>
</tr>
<tr>
<td>2000</td>
<td>36.5 37.5</td>
</tr>
<tr>
<td>2500</td>
<td>37.8</td>
</tr>
<tr>
<td>3150</td>
<td>43.7</td>
</tr>
<tr>
<td>4000</td>
<td>49.6 47.2</td>
</tr>
<tr>
<td>5000</td>
<td>55.0</td>
</tr>
</tbody>
</table>

平均値 31
STC 35
T等級相当※ T-2 T-2
Rw 34
Ra,2 30

※p11（注4）参照
56. PW6.8+A8+合わせ（FL3+PVB30+FL3）

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>22.0</td>
</tr>
<tr>
<td>125</td>
<td>21.8</td>
</tr>
<tr>
<td>160</td>
<td>22.6</td>
</tr>
<tr>
<td>200</td>
<td>20.5</td>
</tr>
<tr>
<td>250</td>
<td>22.2</td>
</tr>
<tr>
<td>315</td>
<td>24.7</td>
</tr>
<tr>
<td>400</td>
<td>26.3</td>
</tr>
<tr>
<td>500</td>
<td>30.7</td>
</tr>
<tr>
<td>630</td>
<td>34.6</td>
</tr>
<tr>
<td>800</td>
<td>38.8</td>
</tr>
<tr>
<td>1000</td>
<td>40.9</td>
</tr>
<tr>
<td>1250</td>
<td>41.7</td>
</tr>
<tr>
<td>1600</td>
<td>38.8</td>
</tr>
<tr>
<td>2000</td>
<td>36.6</td>
</tr>
<tr>
<td>2500</td>
<td>38.1</td>
</tr>
<tr>
<td>3150</td>
<td>44.5</td>
</tr>
<tr>
<td>4000</td>
<td>50.4</td>
</tr>
<tr>
<td>5000</td>
<td>55.8</td>
</tr>
</tbody>
</table>

平均値 31
STC 35
T等級相当※ T-2 T-2
Rw 34
Rₐ,₂ 30
※p11（注4）参照
57. PW6.8+A12+合わせ(FL3+PVB30+FL3)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>21.6</td>
</tr>
<tr>
<td>125</td>
<td>20.5</td>
</tr>
<tr>
<td>160</td>
<td>18.8</td>
</tr>
<tr>
<td>200</td>
<td>19.4</td>
</tr>
<tr>
<td>250</td>
<td>22.0</td>
</tr>
<tr>
<td>315</td>
<td>21.6</td>
</tr>
<tr>
<td>400</td>
<td>29.0</td>
</tr>
<tr>
<td>500</td>
<td>32.1</td>
</tr>
<tr>
<td>630</td>
<td>36.5</td>
</tr>
<tr>
<td>800</td>
<td>40.8</td>
</tr>
<tr>
<td>1000</td>
<td>43.4</td>
</tr>
<tr>
<td>1250</td>
<td>44.1</td>
</tr>
<tr>
<td>1600</td>
<td>41.7</td>
</tr>
<tr>
<td>2000</td>
<td>37.1</td>
</tr>
<tr>
<td>2500</td>
<td>39.8</td>
</tr>
<tr>
<td>3150</td>
<td>46.3</td>
</tr>
<tr>
<td>4000</td>
<td>51.7</td>
</tr>
<tr>
<td>5000</td>
<td>58.6</td>
</tr>
</tbody>
</table>

平均値 31
STC 35
T等級相当※ T-2 T-2
Rw 35
R_{A2} 29

※p11（注4）参照
2. 板ガラスの遮音性能

58. FL5+A6+合わせ(FL4+PVB30+FL4)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>24.0</td>
</tr>
<tr>
<td>125</td>
<td>24.8</td>
</tr>
<tr>
<td>160</td>
<td>24.1</td>
</tr>
<tr>
<td>200</td>
<td>25.0</td>
</tr>
<tr>
<td>250</td>
<td>25.0</td>
</tr>
<tr>
<td>315</td>
<td>24.4</td>
</tr>
<tr>
<td>400</td>
<td>26.8</td>
</tr>
<tr>
<td>500</td>
<td>29.2</td>
</tr>
<tr>
<td>630</td>
<td>33.0</td>
</tr>
<tr>
<td>800</td>
<td>37.4</td>
</tr>
<tr>
<td>1000</td>
<td>39.3</td>
</tr>
<tr>
<td>1250</td>
<td>40.4</td>
</tr>
<tr>
<td>1600</td>
<td>40.0</td>
</tr>
<tr>
<td>2000</td>
<td>38.6</td>
</tr>
<tr>
<td>2500</td>
<td>41.0</td>
</tr>
<tr>
<td>3150</td>
<td>44.7</td>
</tr>
<tr>
<td>4000</td>
<td>49.2</td>
</tr>
<tr>
<td>5000</td>
<td>54.3</td>
</tr>
</tbody>
</table>

平均値 32
STC 35
T等級相当※ T-2 T-2
Rw 35
R_{A2} 31
※p11（注4）参照
59. FL5+A12+合わせ(FL4+PVB30+FL4)

周波数 (Hz)	23.2	22.1	19.1	21.7	22.6	23.0	25.4	29.0	32.4	31.6	36.0	40.5	42.5	41.9	43.1	42.3	41.0	41.8	42.1	45.5	50.5	48.8	55.4		
100																									
125	23.2																								
160	22.1	21.1																							
200	19.1																								
250	21.7																								
315	22.6	23.0																							
400	25.4																								
500	29.0																								
630	32.4	31.6																							
800	36.0																								
1000	40.5																								
1250	42.5	41.9																							
1600	43.1																								
2000	42.3																								
2500	41.0	41.8																							
3150	42.1																								
4000	45.5																								
5000	50.5	48.8																							

	32																								
STC	36																								
T等級相当※	T-2	T-2																							
Rw	36																								
Ra,2	30																								

※p11（注4）参照
2. 板ガラスの遮音性能

60. FL6+A6+合わせ(FL4+PVB30+FL4)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>25.7</td>
</tr>
<tr>
<td>125</td>
<td>26.1</td>
</tr>
<tr>
<td>160</td>
<td>25.7</td>
</tr>
<tr>
<td>200</td>
<td>24.9</td>
</tr>
<tr>
<td>250</td>
<td>25.7</td>
</tr>
<tr>
<td>315</td>
<td>26.8</td>
</tr>
<tr>
<td>400</td>
<td>29.4</td>
</tr>
<tr>
<td>500</td>
<td>32.5</td>
</tr>
<tr>
<td>630</td>
<td>35.6</td>
</tr>
<tr>
<td>800</td>
<td>39.1</td>
</tr>
<tr>
<td>1000</td>
<td>40.2</td>
</tr>
<tr>
<td>1250</td>
<td>38.9</td>
</tr>
<tr>
<td>1600</td>
<td>37.6</td>
</tr>
<tr>
<td>2000</td>
<td>35.1</td>
</tr>
<tr>
<td>2500</td>
<td>40.4</td>
</tr>
<tr>
<td>3150</td>
<td>44.9</td>
</tr>
<tr>
<td>4000</td>
<td>49.8</td>
</tr>
<tr>
<td>5000</td>
<td>54.6</td>
</tr>
</tbody>
</table>

平均値 32
STC 36
T等級相当※ T-2 T-2
Rw 36
Ra,2 33
※p11（注4）参照
61. FL6+A12+合わせ(FL4+PVB30+FL)
2. 板ガラスの遮音性能

62. FL4+A6+合わせ(PW6.8+PVB30mil+FL3)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>24.7</td>
</tr>
<tr>
<td>125</td>
<td>25.5</td>
</tr>
<tr>
<td>160</td>
<td>24.6</td>
</tr>
<tr>
<td>200</td>
<td>25.1</td>
</tr>
<tr>
<td>250</td>
<td>25.1</td>
</tr>
<tr>
<td>315</td>
<td>25.1</td>
</tr>
<tr>
<td>400</td>
<td>27.6</td>
</tr>
<tr>
<td>500</td>
<td>30.2</td>
</tr>
<tr>
<td>630</td>
<td>33.2</td>
</tr>
<tr>
<td>800</td>
<td>36.5</td>
</tr>
<tr>
<td>1000</td>
<td>37.9</td>
</tr>
<tr>
<td>1250</td>
<td>40.0</td>
</tr>
<tr>
<td>1600</td>
<td>39.7</td>
</tr>
<tr>
<td>2000</td>
<td>43.6</td>
</tr>
<tr>
<td>2500</td>
<td>46.2</td>
</tr>
<tr>
<td>3150</td>
<td>45.7</td>
</tr>
<tr>
<td>4000</td>
<td>48.1</td>
</tr>
<tr>
<td>5000</td>
<td>53.7</td>
</tr>
</tbody>
</table>

平均値 32
STC 36
T等級相当※ T-2 T-2
Rw 36
RA,2 32
※p11（注4）参照
63. FL4+A8+合わせ(PW6.8+PVB30mil+FL3)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>25.8</td>
</tr>
<tr>
<td>125</td>
<td>25.3 25.2</td>
</tr>
<tr>
<td>160</td>
<td>24.6</td>
</tr>
<tr>
<td>200</td>
<td>24.0</td>
</tr>
<tr>
<td>250</td>
<td>23.0 24.0</td>
</tr>
<tr>
<td>315</td>
<td>25.2</td>
</tr>
<tr>
<td>400</td>
<td>27.8</td>
</tr>
<tr>
<td>500</td>
<td>30.3 30.0</td>
</tr>
<tr>
<td>630</td>
<td>33.7</td>
</tr>
<tr>
<td>800</td>
<td>36.9</td>
</tr>
<tr>
<td>1000</td>
<td>38.4 38.4</td>
</tr>
<tr>
<td>1250</td>
<td>40.8</td>
</tr>
<tr>
<td>1600</td>
<td>40.5</td>
</tr>
<tr>
<td>2000</td>
<td>44.6 43.2</td>
</tr>
<tr>
<td>2500</td>
<td>47.3</td>
</tr>
<tr>
<td>3150</td>
<td>47.1</td>
</tr>
<tr>
<td>4000</td>
<td>49.9 49.6</td>
</tr>
<tr>
<td>5000</td>
<td>54.9</td>
</tr>
</tbody>
</table>

平均値 33
STC 35
T級相当※ T-2 T-2
Rw 35
R_{A,2} 31
※p11（注4）参照
2. 板ガラスの遮音性能

64. FL6+A6+合わせ(FL5+PVB30+FL5)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>29.6</td>
</tr>
<tr>
<td>125</td>
<td>30.0</td>
</tr>
<tr>
<td>160</td>
<td>27.2</td>
</tr>
<tr>
<td>200</td>
<td>26.3</td>
</tr>
<tr>
<td>250</td>
<td>25.6</td>
</tr>
<tr>
<td>315</td>
<td>28.0</td>
</tr>
<tr>
<td>400</td>
<td>29.9</td>
</tr>
<tr>
<td>500</td>
<td>31.9</td>
</tr>
<tr>
<td>630</td>
<td>35.7</td>
</tr>
<tr>
<td>800</td>
<td>38.1</td>
</tr>
<tr>
<td>1000</td>
<td>40.6</td>
</tr>
<tr>
<td>1250</td>
<td>40.6</td>
</tr>
<tr>
<td>1600</td>
<td>38.9</td>
</tr>
<tr>
<td>2000</td>
<td>39.2</td>
</tr>
<tr>
<td>2500</td>
<td>42.1</td>
</tr>
<tr>
<td>3150</td>
<td>48.2</td>
</tr>
<tr>
<td>4000</td>
<td>54.3</td>
</tr>
<tr>
<td>5000</td>
<td>60.8</td>
</tr>
</tbody>
</table>

平均値 34
STC 37
T等級相当※ T-2 T-2
Rw 37
RA,2 34
※p11（注4）参照
65. FL6+A12+合わせ(FL5+PVB30+FL5)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>29.2</td>
</tr>
<tr>
<td>125</td>
<td>26.7</td>
</tr>
<tr>
<td>160</td>
<td>21.5</td>
</tr>
<tr>
<td>200</td>
<td>23.0</td>
</tr>
<tr>
<td>250</td>
<td>29.7</td>
</tr>
<tr>
<td>315</td>
<td>29.9</td>
</tr>
<tr>
<td>400</td>
<td>32.7</td>
</tr>
<tr>
<td>500</td>
<td>33.8</td>
</tr>
<tr>
<td>630</td>
<td>38.3</td>
</tr>
<tr>
<td>800</td>
<td>40.7</td>
</tr>
<tr>
<td>1000</td>
<td>43.3</td>
</tr>
<tr>
<td>1250</td>
<td>42.4</td>
</tr>
<tr>
<td>1600</td>
<td>41.3</td>
</tr>
<tr>
<td>2000</td>
<td>41.4</td>
</tr>
<tr>
<td>2500</td>
<td>44.0</td>
</tr>
<tr>
<td>3150</td>
<td>50.8</td>
</tr>
<tr>
<td>4000</td>
<td>56.2</td>
</tr>
<tr>
<td>5000</td>
<td>60.9</td>
</tr>
</tbody>
</table>

平均値 35
STC 38
T等級相当※ T-2 T-3
Rw 38
Ra,2 33
※p11（注4）参照
2. 板ガラスの遮音性能

66. FL8+A6+合わせ(FL4+PVB30+FL4)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>29.2</td>
</tr>
<tr>
<td>125</td>
<td>27.8</td>
</tr>
<tr>
<td>160</td>
<td>27.0</td>
</tr>
<tr>
<td>200</td>
<td>24.4</td>
</tr>
<tr>
<td>250</td>
<td>22.3</td>
</tr>
<tr>
<td>315</td>
<td>25.5</td>
</tr>
<tr>
<td>400</td>
<td>28.6</td>
</tr>
<tr>
<td>500</td>
<td>31.6</td>
</tr>
<tr>
<td>630</td>
<td>34.9</td>
</tr>
<tr>
<td>800</td>
<td>38.1</td>
</tr>
<tr>
<td>1000</td>
<td>39.6</td>
</tr>
<tr>
<td>1250</td>
<td>37.6</td>
</tr>
<tr>
<td>1600</td>
<td>36.9</td>
</tr>
<tr>
<td>2000</td>
<td>38.2</td>
</tr>
<tr>
<td>2500</td>
<td>42.3</td>
</tr>
<tr>
<td>3150</td>
<td>48.5</td>
</tr>
<tr>
<td>4000</td>
<td>54.2</td>
</tr>
<tr>
<td>5000</td>
<td>60.2</td>
</tr>
</tbody>
</table>

平均値 32
STC 35
T等級相当※ T-2 T-2
Rw 35
RA,2 32
※p11（注4）参照
67. FL8+A12+合わせ(FL4+PVB30+FL4)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>1/3Oct.</th>
<th>Oct.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>27.8</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>25.7</td>
<td>24.2</td>
</tr>
<tr>
<td>160</td>
<td>21.5</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>21.9</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>23.6</td>
<td>23.5</td>
</tr>
<tr>
<td>315</td>
<td>25.8</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>30.1</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>33.1</td>
<td>32.5</td>
</tr>
<tr>
<td>630</td>
<td>36.4</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>39.9</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>41.7</td>
<td>40.3</td>
</tr>
<tr>
<td>1250</td>
<td>39.6</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>38.3</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>39.9</td>
<td>40.1</td>
</tr>
<tr>
<td>2500</td>
<td>43.9</td>
<td></td>
</tr>
<tr>
<td>3150</td>
<td>50.5</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>55.3</td>
<td>53.7</td>
</tr>
<tr>
<td>5000</td>
<td>60.1</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>平均値</td>
<td>33</td>
</tr>
<tr>
<td>STC</td>
<td>36</td>
</tr>
<tr>
<td>T等級相当※</td>
<td>T-2</td>
</tr>
<tr>
<td>Rw</td>
<td>36</td>
</tr>
<tr>
<td>RA,2</td>
<td>31</td>
</tr>
</tbody>
</table>

※p11（注4）参照
2. 板ガラスの遮音性能

68. FL8+A6+合わせ(FL5+PVB30+FL5)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>32.0</td>
</tr>
<tr>
<td>125</td>
<td>30.5 29.1</td>
</tr>
<tr>
<td>160</td>
<td>26.7</td>
</tr>
<tr>
<td>200</td>
<td>25.6</td>
</tr>
<tr>
<td>250</td>
<td>26.4 26.9</td>
</tr>
<tr>
<td>315</td>
<td>29.5</td>
</tr>
<tr>
<td>400</td>
<td>32.1</td>
</tr>
<tr>
<td>500</td>
<td>34.6 34.2</td>
</tr>
<tr>
<td>630</td>
<td>37.6</td>
</tr>
<tr>
<td>800</td>
<td>39.2</td>
</tr>
<tr>
<td>1000</td>
<td>40.1 38.7</td>
</tr>
<tr>
<td>1250</td>
<td>37.2</td>
</tr>
<tr>
<td>1600</td>
<td>35.5</td>
</tr>
<tr>
<td>2000</td>
<td>40.4 38.6</td>
</tr>
<tr>
<td>2500</td>
<td>44.3</td>
</tr>
<tr>
<td>3150</td>
<td>50.3</td>
</tr>
<tr>
<td>4000</td>
<td>55.5 53.7</td>
</tr>
<tr>
<td>5000</td>
<td>61.4</td>
</tr>
</tbody>
</table>

平均値 34
STC 37
T等級相当※ T-3 T-3
Rw 37
R_{A_2} 34
※p11（注4）参照
69. FL8+A12+合わせ(FL5+PVB30+FL5)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>31.4</td>
</tr>
<tr>
<td>125</td>
<td>27.7 25.9</td>
</tr>
<tr>
<td>160</td>
<td>22.7</td>
</tr>
<tr>
<td>200</td>
<td>25.7</td>
</tr>
<tr>
<td>250</td>
<td>30.2 28.4</td>
</tr>
<tr>
<td>315</td>
<td>31.4</td>
</tr>
<tr>
<td>400</td>
<td>35.0</td>
</tr>
<tr>
<td>500</td>
<td>36.5 36.7</td>
</tr>
<tr>
<td>630</td>
<td>39.9</td>
</tr>
<tr>
<td>800</td>
<td>41.4</td>
</tr>
<tr>
<td>1000</td>
<td>42.4 40.4</td>
</tr>
<tr>
<td>1250</td>
<td>38.5</td>
</tr>
<tr>
<td>1600</td>
<td>36.5</td>
</tr>
<tr>
<td>2000</td>
<td>41.5 39.7</td>
</tr>
<tr>
<td>2500</td>
<td>45.4</td>
</tr>
<tr>
<td>3150</td>
<td>51.5</td>
</tr>
<tr>
<td>4000</td>
<td>56.1 54.7</td>
</tr>
<tr>
<td>5000</td>
<td>61.6</td>
</tr>
</tbody>
</table>

平均値 35
STC 39
T等級相当※ T-3 T-3
Rw 39
RA,2 35
※p11（注4）参照
70. FL10+A6+合わせ(FL5+PVB30+FL5)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>32.4</td>
</tr>
<tr>
<td>125</td>
<td>32.4</td>
</tr>
<tr>
<td>160</td>
<td>26.2</td>
</tr>
<tr>
<td>200</td>
<td>24.2</td>
</tr>
<tr>
<td>250</td>
<td>25.7</td>
</tr>
<tr>
<td>315</td>
<td>26.8</td>
</tr>
<tr>
<td>400</td>
<td>31.4</td>
</tr>
<tr>
<td>500</td>
<td>33.4</td>
</tr>
<tr>
<td>630</td>
<td>37.2</td>
</tr>
<tr>
<td>800</td>
<td>39.1</td>
</tr>
<tr>
<td>1000</td>
<td>38.9</td>
</tr>
<tr>
<td>1250</td>
<td>37.3</td>
</tr>
<tr>
<td>1600</td>
<td>37.9</td>
</tr>
<tr>
<td>2000</td>
<td>42.4</td>
</tr>
<tr>
<td>2500</td>
<td>46.3</td>
</tr>
<tr>
<td>3150</td>
<td>52.0</td>
</tr>
<tr>
<td>4000</td>
<td>57.5</td>
</tr>
<tr>
<td>5000</td>
<td>64.0</td>
</tr>
</tbody>
</table>

音響透過損失(dB)

平均値 34
STC 37
T等級相当※ T-2 T-2
Rw 37
RA,2 33
※p11（注4）参照
71. FL10+A12+合わせ(FL5+PVB30+FL5)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>29.3</td>
</tr>
<tr>
<td>125</td>
<td>28.1</td>
</tr>
<tr>
<td>160</td>
<td>18.0</td>
</tr>
<tr>
<td>200</td>
<td>22.0</td>
</tr>
<tr>
<td>250</td>
<td>29.7</td>
</tr>
<tr>
<td>315</td>
<td>28.1</td>
</tr>
<tr>
<td>400</td>
<td>33.5</td>
</tr>
<tr>
<td>500</td>
<td>35.3</td>
</tr>
<tr>
<td>630</td>
<td>39.0</td>
</tr>
<tr>
<td>800</td>
<td>40.4</td>
</tr>
<tr>
<td>1000</td>
<td>39.5</td>
</tr>
<tr>
<td>1250</td>
<td>38.3</td>
</tr>
<tr>
<td>1600</td>
<td>39.3</td>
</tr>
<tr>
<td>2000</td>
<td>43.8</td>
</tr>
<tr>
<td>2500</td>
<td>47.6</td>
</tr>
<tr>
<td>3150</td>
<td>53.1</td>
</tr>
<tr>
<td>4000</td>
<td>57.9</td>
</tr>
<tr>
<td>5000</td>
<td>63.1</td>
</tr>
</tbody>
</table>

平均値 34
STC 37
T等級相当※ T-2 T-3
Rw 37
RA,2 32
※p11（注4）参照
2. 板ガラスの遮音性能

72. FL12+A6+合わせ(FL5+PVB30+FL5)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>1/3Oct.</th>
<th>Oct.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>32.7</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>33.5</td>
<td>31.0</td>
</tr>
<tr>
<td>160</td>
<td>28.5</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>26.1</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>28.3</td>
<td>28.1</td>
</tr>
<tr>
<td>315</td>
<td>31.3</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>34.9</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>35.9</td>
<td>36.4</td>
</tr>
<tr>
<td>630</td>
<td>39.7</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>40.6</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>38.9</td>
<td>38.8</td>
</tr>
<tr>
<td>1250</td>
<td>37.4</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>39.2</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>43.4</td>
<td>42.1</td>
</tr>
<tr>
<td>2500</td>
<td>47.6</td>
<td></td>
</tr>
<tr>
<td>3150</td>
<td>54.2</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>59.5</td>
<td>57.6</td>
</tr>
<tr>
<td>5000</td>
<td>65.9</td>
<td></td>
</tr>
</tbody>
</table>

平均値 36
STC 39
T等級相当※ T-3 T-3
Rw 39
RA,2 35
※p11（注4）参照
73. FL12+A12+合わせ（FL5+PVB30+FL5）

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>26.1</td>
</tr>
<tr>
<td>125</td>
<td>30.7</td>
</tr>
<tr>
<td>160</td>
<td>27.8</td>
</tr>
<tr>
<td>200</td>
<td>26.5</td>
</tr>
<tr>
<td>250</td>
<td>30.8</td>
</tr>
<tr>
<td>315</td>
<td>33.4</td>
</tr>
<tr>
<td>400</td>
<td>37.1</td>
</tr>
<tr>
<td>500</td>
<td>38.4</td>
</tr>
<tr>
<td>630</td>
<td>41.1</td>
</tr>
<tr>
<td>800</td>
<td>41.4</td>
</tr>
<tr>
<td>1000</td>
<td>39.5</td>
</tr>
<tr>
<td>1250</td>
<td>38.6</td>
</tr>
<tr>
<td>1600</td>
<td>40.6</td>
</tr>
<tr>
<td>2000</td>
<td>45.2</td>
</tr>
<tr>
<td>2500</td>
<td>49.0</td>
</tr>
<tr>
<td>3150</td>
<td>54.6</td>
</tr>
<tr>
<td>4000</td>
<td>59.4</td>
</tr>
<tr>
<td>5000</td>
<td>64.4</td>
</tr>
</tbody>
</table>

平均値 36
STC 40
T等級相当※ T-3 T-3
Rw 40
Ra2 36
※p11（注4）参照
2. 板ガラスの遮音性能

74. FL8+A6+合わせ(FL6+PVB30+FL6)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>32.6</td>
</tr>
<tr>
<td>125</td>
<td>31.4</td>
</tr>
<tr>
<td>160</td>
<td>28.8</td>
</tr>
<tr>
<td>200</td>
<td>28.1</td>
</tr>
<tr>
<td>250</td>
<td>28.7</td>
</tr>
<tr>
<td>315</td>
<td>31.7</td>
</tr>
<tr>
<td>400</td>
<td>34.6</td>
</tr>
<tr>
<td>500</td>
<td>36.5</td>
</tr>
<tr>
<td>630</td>
<td>39.1</td>
</tr>
<tr>
<td>800</td>
<td>40.2</td>
</tr>
<tr>
<td>1000</td>
<td>39.2</td>
</tr>
<tr>
<td>1250</td>
<td>37.6</td>
</tr>
<tr>
<td>1600</td>
<td>38.9</td>
</tr>
<tr>
<td>2000</td>
<td>41.4</td>
</tr>
<tr>
<td>2500</td>
<td>44.9</td>
</tr>
<tr>
<td>3150</td>
<td>49.9</td>
</tr>
<tr>
<td>4000</td>
<td>54.3</td>
</tr>
<tr>
<td>5000</td>
<td>59.1</td>
</tr>
</tbody>
</table>

- 平均値: 36
- STC: 39
- T等級相当: T-3 T-3
- Rw: 39
- RA2: 36

※p11（注4）参照
75. FL8+A12+合わせ(FL6+PVB30+FL6)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>27.7</td>
</tr>
<tr>
<td>125</td>
<td>28.0</td>
</tr>
<tr>
<td>160</td>
<td>27.2</td>
</tr>
<tr>
<td>200</td>
<td>31.2</td>
</tr>
<tr>
<td>250</td>
<td>32.5</td>
</tr>
<tr>
<td>315</td>
<td>34.3</td>
</tr>
<tr>
<td>400</td>
<td>37.7</td>
</tr>
<tr>
<td>500</td>
<td>39.2</td>
</tr>
<tr>
<td>630</td>
<td>41.4</td>
</tr>
<tr>
<td>800</td>
<td>42.0</td>
</tr>
<tr>
<td>1000</td>
<td>40.4</td>
</tr>
<tr>
<td>1250</td>
<td>37.7</td>
</tr>
<tr>
<td>1600</td>
<td>39.1</td>
</tr>
<tr>
<td>2000</td>
<td>42.2</td>
</tr>
<tr>
<td>2500</td>
<td>46.4</td>
</tr>
<tr>
<td>3150</td>
<td>51.3</td>
</tr>
<tr>
<td>4000</td>
<td>56.3</td>
</tr>
<tr>
<td>5000</td>
<td>61.3</td>
</tr>
</tbody>
</table>

平均値 36
STC 41
T等級相当※ T-3 T-4
R_w 41
R_{A,2} 37

※p11（注4）参照
2. 板ガラスの遮音性能

76. FL10+A6+合わせ (FL6+PVB30+FL6)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>32.9</td>
</tr>
<tr>
<td>125</td>
<td>33.0</td>
</tr>
<tr>
<td>160</td>
<td>29.0</td>
</tr>
<tr>
<td>200</td>
<td>27.2</td>
</tr>
<tr>
<td>250</td>
<td>29.1</td>
</tr>
<tr>
<td>315</td>
<td>31.5</td>
</tr>
<tr>
<td>400</td>
<td>34.8</td>
</tr>
<tr>
<td>500</td>
<td>36.3</td>
</tr>
<tr>
<td>630</td>
<td>39.2</td>
</tr>
<tr>
<td>800</td>
<td>40.2</td>
</tr>
<tr>
<td>1000</td>
<td>38.2</td>
</tr>
<tr>
<td>1250</td>
<td>37.5</td>
</tr>
<tr>
<td>1600</td>
<td>39.0</td>
</tr>
<tr>
<td>2000</td>
<td>43.3</td>
</tr>
<tr>
<td>2500</td>
<td>46.7</td>
</tr>
<tr>
<td>3150</td>
<td>51.1</td>
</tr>
<tr>
<td>4000</td>
<td>55.6</td>
</tr>
<tr>
<td>5000</td>
<td>60.6</td>
</tr>
</tbody>
</table>

平均値 36
STC 39
T等級相当 T-3 T-3
Rw 39
RA,2 36
※p11（注4）参照
77. FL10+A12+合わせ(FL6+PVB30+FL6)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>26.2</td>
</tr>
<tr>
<td>125</td>
<td>32.8</td>
</tr>
<tr>
<td>160</td>
<td>28.0</td>
</tr>
<tr>
<td>200</td>
<td>27.6</td>
</tr>
<tr>
<td>250</td>
<td>32.3</td>
</tr>
<tr>
<td>315</td>
<td>33.2</td>
</tr>
<tr>
<td>400</td>
<td>37.1</td>
</tr>
<tr>
<td>500</td>
<td>38.3</td>
</tr>
<tr>
<td>630</td>
<td>40.6</td>
</tr>
<tr>
<td>800</td>
<td>41.1</td>
</tr>
<tr>
<td>1000</td>
<td>38.2</td>
</tr>
<tr>
<td>1250</td>
<td>37.7</td>
</tr>
<tr>
<td>1600</td>
<td>39.4</td>
</tr>
<tr>
<td>2000</td>
<td>43.4</td>
</tr>
<tr>
<td>2500</td>
<td>47.0</td>
</tr>
<tr>
<td>3150</td>
<td>51.6</td>
</tr>
<tr>
<td>4000</td>
<td>56.4</td>
</tr>
<tr>
<td>5000</td>
<td>62.0</td>
</tr>
</tbody>
</table>

平均値 36

STC 40

T等級相当※ T-3 T-3

Rw 40

RA,2 36

※p11（注4）参照
78. FL10+A6+合わせ(FL8+PVB30+FL8)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>32.4</td>
</tr>
<tr>
<td>125</td>
<td>33.3</td>
</tr>
<tr>
<td>160</td>
<td>30.7</td>
</tr>
<tr>
<td>200</td>
<td>31.5</td>
</tr>
<tr>
<td>250</td>
<td>34.9</td>
</tr>
<tr>
<td>315</td>
<td>34.6</td>
</tr>
<tr>
<td>400</td>
<td>37.7</td>
</tr>
<tr>
<td>500</td>
<td>39.0</td>
</tr>
<tr>
<td>630</td>
<td>40.6</td>
</tr>
<tr>
<td>800</td>
<td>38.4</td>
</tr>
<tr>
<td>1000</td>
<td>36.5</td>
</tr>
<tr>
<td>1250</td>
<td>38.5</td>
</tr>
<tr>
<td>1600</td>
<td>41.0</td>
</tr>
<tr>
<td>2000</td>
<td>44.9</td>
</tr>
<tr>
<td>2500</td>
<td>48.4</td>
</tr>
<tr>
<td>3150</td>
<td>53.2</td>
</tr>
<tr>
<td>4000</td>
<td>57.6</td>
</tr>
<tr>
<td>5000</td>
<td>62.4</td>
</tr>
</tbody>
</table>

平均値: 37
STC: 41
T等級相当: T-3 T-4
Rw: 41
RA2: 38

※p11（注4）参照
79. FL10+A12+合わせ(FL8+PVB30+FL8)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>25.4</td>
</tr>
<tr>
<td>125</td>
<td>31.8</td>
</tr>
<tr>
<td>160</td>
<td>32.7</td>
</tr>
<tr>
<td>200</td>
<td>34.0</td>
</tr>
<tr>
<td>250</td>
<td>37.8</td>
</tr>
<tr>
<td>315</td>
<td>36.4</td>
</tr>
<tr>
<td>400</td>
<td>39.3</td>
</tr>
<tr>
<td>500</td>
<td>40.3</td>
</tr>
<tr>
<td>630</td>
<td>41.4</td>
</tr>
<tr>
<td>800</td>
<td>38.7</td>
</tr>
<tr>
<td>1000</td>
<td>37.8</td>
</tr>
<tr>
<td>1250</td>
<td>38.6</td>
</tr>
<tr>
<td>1600</td>
<td>41.3</td>
</tr>
<tr>
<td>2000</td>
<td>45.7</td>
</tr>
<tr>
<td>2500</td>
<td>49.3</td>
</tr>
<tr>
<td>3150</td>
<td>54.6</td>
</tr>
<tr>
<td>4000</td>
<td>57.8</td>
</tr>
<tr>
<td>5000</td>
<td>64.5</td>
</tr>
</tbody>
</table>

平均値 38
STC 42
T等級相当※ T-3 T-4
Rw 41
R_{A2} 38
※p11（注4）参照
2. 板ガラスの遮音性能

80. FL12+A6+合わせ(FL6+PVB30+FL6)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>31.3</td>
</tr>
<tr>
<td>125</td>
<td>28.4 29.9</td>
</tr>
<tr>
<td>160</td>
<td>30.5</td>
</tr>
<tr>
<td>200</td>
<td>25.9</td>
</tr>
<tr>
<td>250</td>
<td>28.5 28.2</td>
</tr>
<tr>
<td>315</td>
<td>32.3</td>
</tr>
<tr>
<td>400</td>
<td>35.1</td>
</tr>
<tr>
<td>500</td>
<td>35.8 36.2</td>
</tr>
<tr>
<td>630</td>
<td>38.3</td>
</tr>
<tr>
<td>800</td>
<td>38.7</td>
</tr>
<tr>
<td>1000</td>
<td>37.3 37.6</td>
</tr>
<tr>
<td>1250</td>
<td>37.1</td>
</tr>
<tr>
<td>1600</td>
<td>40.7</td>
</tr>
<tr>
<td>2000</td>
<td>44.9 43.5</td>
</tr>
<tr>
<td>2500</td>
<td>48.2</td>
</tr>
<tr>
<td>3150</td>
<td>53.2</td>
</tr>
<tr>
<td>4000</td>
<td>57.6 56.3</td>
</tr>
<tr>
<td>5000</td>
<td>62.3</td>
</tr>
</tbody>
</table>

平均値 36
STC 39
T等級相当※ T-3 T-3
Rw 38
RA2 35

※p11（注4）参照
81. FL12+A12+合わせ(FL6+PVB30+FL6)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>24.0</td>
</tr>
<tr>
<td>125</td>
<td>24.5</td>
</tr>
<tr>
<td>160</td>
<td>27.6</td>
</tr>
<tr>
<td>200</td>
<td>27.7</td>
</tr>
<tr>
<td>250</td>
<td>30.5</td>
</tr>
<tr>
<td>315</td>
<td>32.0</td>
</tr>
<tr>
<td>400</td>
<td>36.2</td>
</tr>
<tr>
<td>500</td>
<td>36.9</td>
</tr>
<tr>
<td>630</td>
<td>38.9</td>
</tr>
<tr>
<td>800</td>
<td>38.1</td>
</tr>
<tr>
<td>1000</td>
<td>36.9</td>
</tr>
<tr>
<td>1250</td>
<td>37.6</td>
</tr>
<tr>
<td>1600</td>
<td>41.2</td>
</tr>
<tr>
<td>2000</td>
<td>45.6</td>
</tr>
<tr>
<td>2500</td>
<td>48.8</td>
</tr>
<tr>
<td>3150</td>
<td>54.0</td>
</tr>
<tr>
<td>4000</td>
<td>58.7</td>
</tr>
<tr>
<td>5000</td>
<td>63.4</td>
</tr>
</tbody>
</table>

平均値 35
STC 39
T等級相当 T-3
Rw 39
RA2 35
※p11（注4）参照
2. 板ガラスの遮音性能

82. FL12+A6+合わせ(FL8+PVB30+FL8)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>31.1</td>
</tr>
<tr>
<td>125</td>
<td>32.4</td>
</tr>
<tr>
<td>160</td>
<td>33.8</td>
</tr>
<tr>
<td>200</td>
<td>31.4</td>
</tr>
<tr>
<td>250</td>
<td>34.5</td>
</tr>
<tr>
<td>315</td>
<td>36.2</td>
</tr>
<tr>
<td>400</td>
<td>37.5</td>
</tr>
<tr>
<td>500</td>
<td>39.6</td>
</tr>
<tr>
<td>630</td>
<td>40.2</td>
</tr>
<tr>
<td>800</td>
<td>37.6</td>
</tr>
<tr>
<td>1000</td>
<td>37.6</td>
</tr>
<tr>
<td>1250</td>
<td>39.9</td>
</tr>
<tr>
<td>1600</td>
<td>42.9</td>
</tr>
<tr>
<td>2000</td>
<td>46.5</td>
</tr>
<tr>
<td>2500</td>
<td>49.6</td>
</tr>
<tr>
<td>3150</td>
<td>54.5</td>
</tr>
<tr>
<td>4000</td>
<td>58.8</td>
</tr>
<tr>
<td>5000</td>
<td>63.6</td>
</tr>
</tbody>
</table>

平均値 38
STC 41
T等級相当※ T-3 T-4
Rw 41
RA,2 38
※p11（注4）参照
板ガラスの遮音性能（2015年版）

83. **FL12+A12+合わせ(FL8+PVB30+FL8)**

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>23.6</td>
</tr>
<tr>
<td>125</td>
<td>35.0</td>
</tr>
<tr>
<td>160</td>
<td>35.0</td>
</tr>
<tr>
<td>200</td>
<td>35.5</td>
</tr>
<tr>
<td>250</td>
<td>38.2</td>
</tr>
<tr>
<td>315</td>
<td>36.9</td>
</tr>
<tr>
<td>400</td>
<td>39.1</td>
</tr>
<tr>
<td>500</td>
<td>39.9</td>
</tr>
<tr>
<td>630</td>
<td>39.9</td>
</tr>
<tr>
<td>800</td>
<td>37.3</td>
</tr>
<tr>
<td>1000</td>
<td>37.4</td>
</tr>
<tr>
<td>1250</td>
<td>39.6</td>
</tr>
<tr>
<td>1600</td>
<td>43.1</td>
</tr>
<tr>
<td>2000</td>
<td>47.1</td>
</tr>
<tr>
<td>2500</td>
<td>50.5</td>
</tr>
<tr>
<td>3150</td>
<td>55.7</td>
</tr>
<tr>
<td>4000</td>
<td>60.4</td>
</tr>
<tr>
<td>5000</td>
<td>65.6</td>
</tr>
</tbody>
</table>

平均値 39
STC 42
T等級相当 T-3 T-4
Rw 42
Ra2 38

※p11（注4）参照
2. 板ガラスの遮音性能

84. FL15+A6+合わせ(FL8+PVB30+FL8)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>27.5</td>
</tr>
<tr>
<td>125</td>
<td>30.6</td>
</tr>
<tr>
<td>160</td>
<td>29.7</td>
</tr>
<tr>
<td>200</td>
<td>31.5</td>
</tr>
<tr>
<td>250</td>
<td>31.7</td>
</tr>
<tr>
<td>315</td>
<td>32.9</td>
</tr>
<tr>
<td>400</td>
<td>35.5</td>
</tr>
<tr>
<td>500</td>
<td>36.8</td>
</tr>
<tr>
<td>630</td>
<td>37.4</td>
</tr>
<tr>
<td>800</td>
<td>37.0</td>
</tr>
<tr>
<td>1000</td>
<td>37.3</td>
</tr>
<tr>
<td>1250</td>
<td>40.9</td>
</tr>
<tr>
<td>1600</td>
<td>44.3</td>
</tr>
<tr>
<td>2000</td>
<td>48.4</td>
</tr>
<tr>
<td>2500</td>
<td>52.0</td>
</tr>
<tr>
<td>3150</td>
<td>57.4</td>
</tr>
<tr>
<td>4000</td>
<td>61.7</td>
</tr>
<tr>
<td>5000</td>
<td>66.7</td>
</tr>
</tbody>
</table>

平均値 37

STC 40

T等級相当※ T-3 T-3

Rw 40

R_A2 37

※p11（注4）参照
85. FL15+A12+合わせ(FL8+PVB30+FL8)

<table>
<thead>
<tr>
<th>周波数 (Hz)</th>
<th>音響透過損失(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>22.9</td>
</tr>
<tr>
<td>125</td>
<td>36.7</td>
</tr>
<tr>
<td>160</td>
<td>31.3</td>
</tr>
<tr>
<td>200</td>
<td>32.6</td>
</tr>
<tr>
<td>250</td>
<td>35.3</td>
</tr>
<tr>
<td>315</td>
<td>33.7</td>
</tr>
<tr>
<td>400</td>
<td>35.2</td>
</tr>
<tr>
<td>500</td>
<td>35.4</td>
</tr>
<tr>
<td>630</td>
<td>35.7</td>
</tr>
<tr>
<td>800</td>
<td>35.4</td>
</tr>
<tr>
<td>1000</td>
<td>35.7</td>
</tr>
<tr>
<td>1250</td>
<td>39.9</td>
</tr>
<tr>
<td>1600</td>
<td>44.1</td>
</tr>
<tr>
<td>2000</td>
<td>49.2</td>
</tr>
<tr>
<td>2500</td>
<td>53.3</td>
</tr>
<tr>
<td>3150</td>
<td>58.4</td>
</tr>
<tr>
<td>4000</td>
<td>63.2</td>
</tr>
<tr>
<td>5000</td>
<td>68.4</td>
</tr>
</tbody>
</table>

平均値 37
STC 39
T等級相当 T-3 T-3
Rw 39
RA,2 36
※p11（注4）参照
3. 各種板ガラスの遮音性能の特徴

3.1 単板ガラスの遮音性能

単板ガラスの遮音性能は、以下の通りである。

(1). 低音域では、音響透過損失は質量則による値より大きくなり、
コインシデンス限界周波数(f_c)付近では質量則より10dBほど低くなる。
そして、f_cより高い周波数で、再び周波数の増大とともに質量則の値に徐々に近づく。図3.1.1は、周波数と面密度の積を横軸にとって、各種単板ガラスの全測定結果を重ねて示したものである。

(2). 厚さ別に見た場合、コインシデンス効果による落ち込みを除き、
全般的に周波数に対して、音響透過損失カーブはほぼ平行移動しており、厚さの違い、すなわち面密度の差が明確に透過損失の差となって表れている（図3.1.2～3.1.3参照）。

なお、厚さが同じ場合は、型板ガラス、網入板ガラスなどの遮音性能は、透明板ガラスと同等である。
図3.1.1 単板ガラスの音響透過損失と質量則
3. 各種板ガラスの遮音性能の特徴

図3.1.2 単板ガラスの遮音性能（FL3〜PW6.8）
図 3.1.3 単板ガラスの遮音性能（FL8〜FL19）
3.2 合わせガラスの遮音性能

合わせガラスの遮音性能は、以下の通りである。

(1). 遮音性能の特徴は、基本的には単板ガラスと大きな違いはない。しかし、合わせガラスは単板ガラスに比べて、中間膜(0.76mm厚さのポリビニルブチラール膜)の存在による内部損失が大きいので透過損失の向上が見られ、特にコインシデンス限界周波数\(f_c \)より高い周波数で、遮音効果の改善が顕著である（図3.2.1参照）。また、合わせガラスの内部損失には温度依存性があり、通常30〜40℃で最も大きく、また一般に中間膜の種類や厚さによっても多少異なった特性を示すことが知られている。ここに示した合わせガラスのデータは、高温(約30℃)、常温(約20℃)、低温(約7℃)での測定結果である。内部損失が大きい条件での使用が望ましいが、内部損失が小さい条件(冬季)でも同じ厚さの単板ガラスの遮音性能を下回るものではない。なお、JISに基づく測定温度は、20±3℃である。

(2). 特に厚さ8〜10mm以上の単板ガラスを使う場合は、遮音上重要な中音域にコインシデンス効果が生じるので、合わせガラスを使用することが遮音上効果的である（図3.2.2参照）。

(3). 合わせガラスを構成する2枚のガラスの厚さは、同厚のものを用いるのが一般的であるが、異厚構成でも遮音性能に違いはない。
図3.2.1 合わせガラス（L6）の温度特性と単板ガラス（FL6）との比較
3. 各種板ガラスの遮音性能の特徴

図3.2.2 合わせガラスの遮音性能（L6～L16）
3.3 複層ガラスの遮音性能

複層ガラスの遮音性能は、以下の通りである。

(1). 中低音域において、二枚のガラスの間にある空気層とガラスによる共鳴透過現象が起こる。この共鳴透過周波数(f_{rdm})領域では、音響透過損失が質量則による値より低くなる。

(2). しかし、共鳴透過周波数からコインシデンス限界周波数(f_c)にかけては、徐々に質量則に回復する(図 3.3.1 参照)。

(3). 空気層を増加させた場合(空気層 A6mm→A12mm), f_{rdm}はA6mmに比べてA12mmが約1/2オクターブ低い周波数に生じる。したがって、中高音域ではA12の方が高い透過損失を得られるが、逆に低音域ではA6mmの方が有利となる(図 3.3.2 参照)。

(4). 互いに異なる厚さのガラス板で構成される複層ガラス（異厚複層ガラス）は、同厚ガラスの構成よりも遮音性能上、有利である。これは、2枚の板ガラスの厚さが異なるために、それぞれのコインシデンス効果を互いに打消し合う効果があることと、低音域の共鳴透過による透過損失の低下が少なくて済むことによるものである（図 3.3.3 参照）。また異厚複層ガラスでも、同厚複層ガラスと同様に、低音域ではA6mmの方が効果的であり、中高音域ではA12mmの方が有利であるといえる（図 3.3.4 参照）。
3. 各種板ガラスの遮音性能の特徴

図 3.3.1 同厚複層ガラスと単板ガラスの比較
図 3.3.2 同厚複層ガラスで空気層を変えた場合の比較
3. 各種板ガラスの遮音性能の特徴

図 3.3.3 異厚複層ガラスと同厚複層ガラスの比較
図 3.3.4 異厚複層ガラスで空気層を変えた場合の比較
3.4 二重窓形式の遮音性能

今回の実験では、二重窓形式の構成として以下のものを採用した。

① 単板ガラス（3mm）十空気層十単板ガラス（6mm）
② 単板ガラス（5mm）十空気層十単板ガラス（8mm）
③ 単板ガラス（5mm）十空気層十複層ガラス（3mm+A6+6mm）

また、上記空気層の厚さは、①は50mm,100mm の2種類、②③は50mm,100mm,200mm の3種類とした。

二重窓形式の遮音性能は、以下の通りである。

(1). 単板ガラス＋単板ガラスでは、空気層を広げるにしたがって、低音域の遮音性能が向上する（図 3.4.1 参照）。
(2). 単板ガラス＋複層ガラスでは、複層ガラスの共鳴透過周波数（f_{rmd}）の影響が殆どなく、全般的に良い性能が得られる（図 3.4.2 参照）。
図 3.4.1 単板ガラス + 空気層 + 単板ガラス
図3.4.2 単板ガラス + 空気層 + 複層ガラス
3.5 合わせ複層ガラスの遮音性能

合わせ複層ガラスの遮音性能は、以下の通りである。

(1). 基本的には3.3 複層ガラスの遮音性能と大きな違いはない。しかし、コインシデンス限界周波数(f_c)域においては、3.2 合わせガラスの遮音性能の特徴で述べたように、コインシデンス効果が抑制される傾向にある。

(2). 図3.5.1~3.5.8は、同一ガラス厚さ、空気層厚さの複層ガラスと合わせ複層ガラスを比較したグラフである。複層ガラスの遮音性能の特徴である低音域における共鳴透過現象は、合わせ複層ガラスでもほぼ同等に起こる。一方、コインシデンス効果は、一方のガラスが合わせガラスであることから、その遮音性能の低下は抑制され、通常の複層ガラスに比べて中音域から高音域にかけては遮音性が高い。

(3). 図3.5.9~3.5.12は、2枚のガラス厚さの合計は同一である（合計面密度が等しい）が、それぞれのガラス厚さが同じである同厚合わせ複層ガラスと厚さの異なる異厚合わせ複層ガラスの音響透過損失を示したグラフである。すべての構成において、共鳴透過現象の発現する共鳴透過周波数からコインシデンス効果の発現するコインシデンス限界周波数にいたる周波数範囲で、異厚合わせ複層ガラスが同厚合わせ複層ガラスに比べ高い遮音性を示す。またコインシデンス限界周波数より高い周波数帯域では、単板ガラスの質量差に起因し、単板ガラスの厚い構成の遮音性が高い。
3. 各種板ガラスの遮音性能の特徴

図 3.5.1 合わせ複層ガラスと複層ガラスの比較（1）
図 3.5.2 合わせ複層ガラスと複層ガラスの比較 (2)
3. 各種板ガラスの遮音性能の特徴

図 3.5.3 合わせ複層ガラスと複層ガラスの比較 (3)
図 3.5.4 合わせ複層ガラスと複層ガラスの比較 (4)
3. 各種板ガラスの遮音性能の特徴

図 3.5.5 合わせ複層ガラスと複層ガラスの比較 (5)
図 3.5.6 合わせ複層ガラスと複層ガラスの比較 (6)
3. 各種板ガラスの遮音性能の特徴

図3.5.7 合わせ複層ガラスと複層ガラスの比較 (7)
図 3.5.8 合わせ複層ガラスと複層ガラスの比較 (8)
3. 各種板ガラスの遮音性能の特徴

図 3.5.9 同厚合わせ複層ガラスと異厚合わせ複層ガラスの比較 (1)
図3.5.10 同厚合わせ複層ガラスと異厚合わせ複層ガラスの比較（2）
3. 各種板ガラスの遮音性能の特徴

図 3.5.11 同厚合わせ複層ガラスと異厚合わせ複層ガラスの比較 (3)
図3.5.12 同厚合わせ複層ガラスと異厚合わせ複層ガラスの比較 (4)
<table>
<thead>
<tr>
<th>品番</th>
<th>材質</th>
<th>壁厚</th>
<th>高温度 ASTM E413</th>
<th>低温 STC</th>
<th>遮音等級</th>
<th>1オクターブ</th>
<th>2オクターブ</th>
<th>4オクターブ</th>
<th>8オクターブ</th>
<th>単一数値評価量</th>
<th>透過損失測定値</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-1</td>
<td>T-1</td>
<td>21.6</td>
<td>21.1</td>
<td>25.8</td>
<td>24.9</td>
<td>32.8</td>
<td>27.6</td>
<td>36.1</td>
<td>28.6</td>
<td>34.5</td>
<td>37.5</td>
</tr>
<tr>
<td>T-5</td>
<td>T-2</td>
<td>35.0</td>
<td>33.0</td>
<td>36.9</td>
<td>34.2</td>
<td>35.0</td>
<td>34.5</td>
<td>34.5</td>
<td>35.0</td>
<td>34.5</td>
<td>35.0</td>
</tr>
<tr>
<td>T-2</td>
<td>T-2</td>
<td>26.6</td>
<td>22.0</td>
<td>25.9</td>
<td>24.8</td>
<td>31.7</td>
<td>26.5</td>
<td>35.5</td>
<td>27.0</td>
<td>33.7</td>
<td>36.7</td>
</tr>
<tr>
<td>T-3</td>
<td>T-3</td>
<td>19.4</td>
<td>22.0</td>
<td>25.9</td>
<td>24.8</td>
<td>31.7</td>
<td>26.5</td>
<td>35.5</td>
<td>27.0</td>
<td>33.7</td>
<td>36.7</td>
</tr>
<tr>
<td>T-3</td>
<td>T-3</td>
<td>23.0</td>
<td>26.6</td>
<td>29.5</td>
<td>28.5</td>
<td>35.3</td>
<td>29.3</td>
<td>38.3</td>
<td>29.8</td>
<td>36.0</td>
<td>39.0</td>
</tr>
<tr>
<td>T-2</td>
<td>T-2</td>
<td>25.8</td>
<td>22.0</td>
<td>25.9</td>
<td>24.8</td>
<td>31.7</td>
<td>26.5</td>
<td>35.5</td>
<td>27.0</td>
<td>33.7</td>
<td>36.7</td>
</tr>
<tr>
<td>T-2</td>
<td>T-2</td>
<td>20.0</td>
<td>22.0</td>
<td>25.9</td>
<td>24.8</td>
<td>31.7</td>
<td>26.5</td>
<td>35.5</td>
<td>27.0</td>
<td>33.7</td>
<td>36.7</td>
</tr>
<tr>
<td>T-3</td>
<td>T-3</td>
<td>19.4</td>
<td>22.0</td>
<td>25.9</td>
<td>24.8</td>
<td>31.7</td>
<td>26.5</td>
<td>35.5</td>
<td>27.0</td>
<td>33.7</td>
<td>36.7</td>
</tr>
<tr>
<td>T-2</td>
<td>T-2</td>
<td>35.0</td>
<td>33.0</td>
<td>36.9</td>
<td>34.2</td>
<td>35.0</td>
<td>34.5</td>
<td>34.5</td>
<td>35.0</td>
<td>34.5</td>
<td>35.0</td>
</tr>
<tr>
<td>T-2</td>
<td>T-2</td>
<td>26.6</td>
<td>22.0</td>
<td>25.9</td>
<td>24.8</td>
<td>31.7</td>
<td>26.5</td>
<td>35.5</td>
<td>27.0</td>
<td>33.7</td>
<td>36.7</td>
</tr>
<tr>
<td>T-3</td>
<td>T-3</td>
<td>19.4</td>
<td>22.0</td>
<td>25.9</td>
<td>24.8</td>
<td>31.7</td>
<td>26.5</td>
<td>35.5</td>
<td>27.0</td>
<td>33.7</td>
<td>36.7</td>
</tr>
<tr>
<td>T-2</td>
<td>T-2</td>
<td>35.0</td>
<td>33.0</td>
<td>36.9</td>
<td>34.2</td>
<td>35.0</td>
<td>34.5</td>
<td>34.5</td>
<td>35.0</td>
<td>34.5</td>
<td>35.0</td>
</tr>
<tr>
<td>T-2</td>
<td>T-2</td>
<td>26.6</td>
<td>22.0</td>
<td>25.9</td>
<td>24.8</td>
<td>31.7</td>
<td>26.5</td>
<td>35.5</td>
<td>27.0</td>
<td>33.7</td>
<td>36.7</td>
</tr>
<tr>
<td>T-3</td>
<td>T-3</td>
<td>19.4</td>
<td>22.0</td>
<td>25.9</td>
<td>24.8</td>
<td>31.7</td>
<td>26.5</td>
<td>35.5</td>
<td>27.0</td>
<td>33.7</td>
<td>36.7</td>
</tr>
<tr>
<td>T-2</td>
<td>T-2</td>
<td>35.0</td>
<td>33.0</td>
<td>36.9</td>
<td>34.2</td>
<td>35.0</td>
<td>34.5</td>
<td>34.5</td>
<td>35.0</td>
<td>34.5</td>
<td>35.0</td>
</tr>
<tr>
<td>T-2</td>
<td>T-2</td>
<td>26.6</td>
<td>22.0</td>
<td>25.9</td>
<td>24.8</td>
<td>31.7</td>
<td>26.5</td>
<td>35.5</td>
<td>27.0</td>
<td>33.7</td>
<td>36.7</td>
</tr>
<tr>
<td>T-3</td>
<td>T-3</td>
<td>19.4</td>
<td>22.0</td>
<td>25.9</td>
<td>24.8</td>
<td>31.7</td>
<td>26.5</td>
<td>35.5</td>
<td>27.0</td>
<td>33.7</td>
<td>36.7</td>
</tr>
<tr>
<td>T-2</td>
<td>T-2</td>
<td>35.0</td>
<td>33.0</td>
<td>36.9</td>
<td>34.2</td>
<td>35.0</td>
<td>34.5</td>
<td>34.5</td>
<td>35.0</td>
<td>34.5</td>
<td>35.0</td>
</tr>
<tr>
<td>T-2</td>
<td>T-2</td>
<td>26.6</td>
<td>22.0</td>
<td>25.9</td>
<td>24.8</td>
<td>31.7</td>
<td>26.5</td>
<td>35.5</td>
<td>27.0</td>
<td>33.7</td>
<td>36.7</td>
</tr>
<tr>
<td>T-3</td>
<td>T-3</td>
<td>19.4</td>
<td>22.0</td>
<td>25.9</td>
<td>24.8</td>
<td>31.7</td>
<td>26.5</td>
<td>35.5</td>
<td>27.0</td>
<td>33.7</td>
<td>36.7</td>
</tr>
<tr>
<td>T-2</td>
<td>T-2</td>
<td>35.0</td>
<td>33.0</td>
<td>36.9</td>
<td>34.2</td>
<td>35.0</td>
<td>34.5</td>
<td>34.5</td>
<td>35.0</td>
<td>34.5</td>
<td>35.0</td>
</tr>
<tr>
<td>T-2</td>
<td>T-2</td>
<td>26.6</td>
<td>22.0</td>
<td>25.9</td>
<td>24.8</td>
<td>31.7</td>
<td>26.5</td>
<td>35.5</td>
<td>27.0</td>
<td>33.7</td>
<td>36.7</td>
</tr>
<tr>
<td>屋号</td>
<td>No.</td>
<td>ガラス種類</td>
<td>ガラス構成</td>
<td>高さ</td>
<td>厚さ</td>
<td>面積（m²）</td>
<td>重量（kg）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>FL7-2</td>
<td>FL7-2</td>
<td>FL7-2+PVB30mil+FL7-2</td>
<td>200</td>
<td>275</td>
<td>0.16</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【注意事項】ハインミリス標準塗装（塗装方法：無塗装）を用いた。
參考資料
資料-1

コインシデンス限界周波数 算出方法

1. 単板ガラス

単板ガラスのコインシデンス限界周波数は式(1.1)により表される。

\[f_c = \frac{c^2}{2\pi h} \sqrt{\frac{12 \cdot \rho}{E}} \cdots (1.1) \]

ここで、
- \(f_c \): コインシデンス限界周波数 [Hz]
- \(c \): 音速 [m/s]
- \(h \): 板厚 [m] ※呼び厚さを使用
- \(\rho \): 密度 [kg/m³]
- \(E \): ヤング率 [Pa]

これに、ガラスの密度、ヤング率を代入すると、単板ガラスのコインシデンス限界周波数は近似的に式(1.2)により表される。

\[f_c \approx \frac{12}{h} \cdots (1.2) \]

ここで、
- \(f_c \): コインシデンス限界周波数 [Hz]
- \(h \): 板厚 [m] ※呼び厚さを使用

そこで、本文4. 各種板ガラスの遮音性能一覧表の単板ガラスおよび複層ガラスに構成される単板ガラスのコインシデンス限界周波数 \(f_c \) は、式(1.2)により算出した値を用いる。
2. 合わせガラス

本文3.2節では、合わせガラスの遮音性能の特徴として、低温では同厚の単板ガラスと同等の性能であるが、常温、高温となるにつれてコインシデンス限界周波数付近の音響透過損失の落ち込みが軽減され、性能が良くなるという温度依存性があることを示した（図3.2.1）。

合わせガラスのコインシデンス限界周波数もまた温度依存性を持ち、低温では同厚の単板ガラスと同じ周波数であるが、常温、高温となるにつれてコインシデンス限界周波数が高くなる特徴がある。これは、以下により説明される。

式(1.1)を変形すると、次式を得る。

\[f_c = \frac{c^2}{2\pi} \sqrt{\frac{12m}{h^3E}} \cdots (1.3) \]

ここで、\(m \)：面密度 [kg/m²]

式(1.3)の右辺の平方根内部の分母 \(h^3E \) は板の曲げ剛性を表す。合わせガラスの場合には、面密度 \(m \) は材料の組み合わせから決まり不変であるが、板の曲げ剛性は中間膜の温度特性により変化する。低温では中間膜樹脂の弾性が硬化するために、合わせガラスはあたかもその同厚の単板ガラスと同等の剛性となる。

また、常温においては、中間膜が徐々に軟化し、その剛性は同厚の単板ガラスよりも低下し、見かけ上、板厚が減少したような剛性をもつ。例えば、耐風圧設計においては、合わせガラスの設計上の等価板厚を、夏期台風時を想定して式(1.4)にて算定することとされている（参考文献）。

資料1 コインシデンス限界周波数 算出方法
板ガラスの遮音性能（2015年版）

\[T_{eq} = 0.866 \times T - 0.268 \cdots (1.4) \]

ここで、\(T_{eq} \)：合わせガラスの等価板厚 [mm]
\(T \)：合わせガラスの総厚 [mm]

さらに、50℃以上の超高温においては、中間膜が両側の板ガラスの曲げによるせん断力を伝えないまでに軟化するため、その曲げ剛性は合わせガラスを構成する板ガラスの曲げ剛性の和となる。例えば、同厚の板ガラスで構成されている合わせガラスの場合には、合わせガラス総厚の半分の厚みの板ガラスの曲げ剛性の2枚分が合わせガラスの曲げ剛性に相当することとなる。

これらのことを、式(1.3)に代入して温度別特性を比較する。

低温のとき:

\[f_{c,low} = \frac{c^2}{2\pi} \sqrt{\frac{12 \cdot m}{h^3E}} \cdots (1.5) \]

※ 合わせガラスを構成する材料板ガラス（呼び厚さ）の合計厚を \(h \)とする。

常温のとき:

\[f_{c,mid} = \frac{c^2}{2\pi} \sqrt{\frac{12 \cdot m}{(0.83h)^3E}} \approx 1.3 f_{c,low} \cdots (1.6) \]

※ 合わせガラスの等価板厚を総厚の83%とする。
超高温（50℃以上）のとき：

\[
f_{c,\text{high}} = \frac{c^2}{2\pi} \sqrt{\frac{12 \cdot m}{(0.5h)^3E \times 2}} \approx 2f_{c,\text{low}} \quad \cdots (1.7)
\]

※ 合わせガラスの曲げ剛性は、合わせガラスを構成する材料板ガラスの単体の曲げ剛性の2枚分となる。

よって、合わせガラスのコインシデンス限界周波数は、低温時に合わせガラスと同厚の単板ガラスのコインシデンス限界周波数となり、常温から高温となるにつれて、同厚単板ガラスのコインシデンス限界周波数の1.3倍から最大2倍の周波数となる温度依存性をもつことが分かる。

各種合わせガラスの音響透過損失データ（本文2.3節）に見られるコインシデンス効果が現れる周波数域を同厚の単板ガラスのコインシデンス限界周波数と比較すると、その比は低温時には1.0、常温時には約1.3、高温時には約1.6となっており、上記考察によく一致することが分かる。

そこで、本文4.各種板ガラスの遮音性能一覧表の合わせガラスおよび合わせ複層ガラスのコインシデンス限界周波数 \(f \) は、同厚の単板ガラスのコインシデンス限界周波数にこれらの比を乗じた値を用いて表すこととする。

*参考文献）：
板硝子協会推奨基準 トップライトにおける荷重の算定方法
特殊支持下における板硝子の強度計算法、板硝子協会、2003年8月
資料-2

低音域共鳴透過周波数 算出方法

複層ガラスのように2枚の板が中空層を介して二重構造となる場合、2枚の板が二つの質量となり、また中空層の空気がそれらをつなぐパネとなって振動する共振現象が起こる。このとき、透過損失は質量則よりも低くなり、遮音性能が低下する。この現象は、一般に低音域で生じるので、低音域共鳴透過現象と呼ばれる。

また、これが起こる周波数を共鳴透過周波数（frmd）といい、式(2.1)で与えられる。

\[f_{frmd} = \frac{c}{2\pi} \sqrt{\frac{\rho_0}{d}} \left\{ \frac{m_1+m_2}{m_1 m_2} \right\} \quad \cdots (2.1) \]

ここで、\(f_{frmd} \)：共鳴透過周波数 [Hz]
\(c \) ：音速 [m/s]
\(\rho_0 \) ：中空層気体の密度 [kg/m\(^3\)]
\(d \) ：中空層幅 [m]
\(m_1, m_2 \) ：両側板材の面密度 [kg/m\(^2\)]

中空層気体が空気である場合の共鳴透過周波数は近似的に式(2.2)で算出できる。

\[f_{frmd} \cong 60 \sqrt{\frac{1}{d} \left\{ \frac{m_1+m_2}{m_1 m_2} \right\}} \quad (15℃のとき) \cdots (2.2) \]
資料-3 設置条件の影響による板ガラスの遮音性能について

資料-3
設置条件の影響による板ガラスの遮音性能について

板ガラスの遮音性能は実際の施工条件における様々な設置条件の影響を受け易く、JIS 法で規定される測定方法（既定化された面積およびガラスの支持条件）で評価された結果とは異なる結果になることが少なくない。そのため遮音性能に影響を及ぼす設置条件として、①ガラス寸法による影響、②ガラス支持条件による影響、に着目して検討を行い、その傾向をまとめた。

なお、本内容については、日本建築学会 2007 年度大会（九州）および 2008 年度大会（中国）にて発表した内容である。
① ガラス寸法による影響

これまでの各種板ガラスの遮音性能の特徴の検討は、JIS A 1416:2000 に規定された試料寸法 W1230mm×H1480mm の各種板ガラスを用いた音響透過損失の測定結果によるもので、ものである。この測定結果は、各種ガラスの遮音性能比較のために使用されている。しかし、実際に施工されるガラス寸法は大小様々であり、ここではガラス寸法が遮音性能に及ぼす影、響の有無を確認するために、代表的な板ガラス品種について異なるガラス寸法での音響透過損失の測定結果を参考として示す。

板ガラス品種は表①.1の7種類とした。ここで、合わせガラス L10PVB には一般的なポリビニルブチラール中間膜（PVB30mil）を、防音用合わせガラス L10 遮音 PVB には硬軟の温度依存性の少ない防音用特殊中間膜（30mil）を、それぞれ用いている。

また、開口寸法およびガラス寸法は表①.2の4種類とした。ここで、(a)標準は JIS A 1416:2000 に規定の開口、(b)縦長は米国において標準的に用いられているガラスサイズ、(c)小寸法は小窓、(d)大寸法はオフィスビルなどの大開口を想定している。

なお、測定は、一般財団法人 小林理学研究所試験室棟のタイプⅡ試験室で実施した。

注：測定実施の都合上、全ての開口条件とも開口部調整壁の厚みは旧版の JIS A 1416 に規定されている 270mm としている。よって、①標準の測定結果であっても他の章節の音響透過損失の測定条件と異なることに注意されたい。
設置条件の影響による板ガラスの遮音性能について

表 ①.1 ガラスサイズが及ぼす影響の検討に用いた代表板ガラス品種

<table>
<thead>
<tr>
<th>板ガラス品種</th>
<th>厚み</th>
<th>略号</th>
</tr>
</thead>
<tbody>
<tr>
<td>単板ガラス</td>
<td>6ミリ</td>
<td>FL6</td>
</tr>
<tr>
<td></td>
<td>10ミリ</td>
<td>FL10</td>
</tr>
<tr>
<td></td>
<td>15ミリ</td>
<td>FL15</td>
</tr>
<tr>
<td>合わせガラス</td>
<td>10ミリ</td>
<td>L10PVB</td>
</tr>
<tr>
<td>防音用合わせガラス</td>
<td>10ミリ</td>
<td>L10遮音PVB</td>
</tr>
<tr>
<td>複層ガラス(異厚)</td>
<td>4ミリ+空気層12ミリ+6ミリ</td>
<td>FL4+A12+FL6</td>
</tr>
<tr>
<td>複層ガラス(同厚)</td>
<td>8ミリ+空気層12ミリ+8ミリ</td>
<td>FL8+A12+FL8</td>
</tr>
</tbody>
</table>

表 ①.2 開口寸法

<table>
<thead>
<tr>
<th>開口名称</th>
<th>開口寸法[mm]</th>
<th>開口面積[m²]</th>
<th>ガラス寸法[mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 标準</td>
<td>W:1250×H:1500</td>
<td>1.875</td>
<td>W:1230×H:1480</td>
</tr>
<tr>
<td>(b) 縦長</td>
<td>W: 930×H:2150</td>
<td>2.000</td>
<td>W: 910×H:2130</td>
</tr>
<tr>
<td>(c) 小寸法</td>
<td>W: 930×H:930</td>
<td>0.865</td>
<td>W: 910×H:910</td>
</tr>
</tbody>
</table>

※ 音響透過損失の算出には、ガラス面積ではなく、開口面積が用いられる。

図①.3 に単板ガラス、図①.2 に合わせガラス、図①.3 に複層ガラスのガラス寸法違いによる音響透過損失の比較を示す。

これらによると、いずれの板ガラス品種においても、音響透過損失は①標準と②縦長ではほぼ同等で、③小寸法では①標準よりも高く、④大寸法では①標準よりも低いことが分かる。特にコインシデンス周波数以上の領域での差違が明確である。
(1). 単板ガラス（図 ①.3）
単板ガラスのコインシデンス周波数付近では、(c)小寸法と(d)大寸法に10dB程度の差が生じている。

(2). 合わせガラス（図 ①.4）
合わせガラスではコインシデンス周波数付近以外の領域でのガラス寸法による音響透過損失の差違は小さく、特に防音用合わせガラスではコインシデンス周波数付近においても3dB程度の差違に留まっており、ガラス寸法の違いによる遮音性能の変化が小さいと言える。

(3). 複層ガラス（図 ①.5）
同厚複層ガラス（FL8+A12+FL8）ではガラス寸法による音響透過損失の差違は小さい。一方、異厚複層ガラス（FL4+A12+FL6）ではガラス寸法による差違が顕著に現れており、ガラス寸法が小さいもののほど音響透過損失が大きい。また、異厚複層ガラスの方が同厚複層ガラスよりもガラス合計厚みが小さいにもかかわらず、コインシデンス周波数付近では音響透過損失が高い。これは、同厚複層ガラスでは8ミリ厚の板ガラスのコインシデンス周波数にコインシデンス効果が集中するのに対して、異厚複層ガラスでは2枚の板ガラスの厚さが異なるために、4ミリ厚と6ミリ厚のそれぞれのコインシデンス効果を互いに打ち消し合う効果があることによるものである。また、異厚複層ガラスでは低音域の共鳴透過による透過損失の低下も小さくなり①、板ガラスの合計厚さが同じ同厚複層ガラスに比べて遮音性能が向上する。
【参考文献】

1). 久我新一, 田中洪: 異質部材による中空パネルの透過損失について。
 日本音響学会講演論文集, p.57-58, 昭和48年10月
図 1.3 ガラス寸法違いによる単板ガラスの遮音性能の差違
図 ①.4 ガラス寸法違いによる合わせガラスの遮音性能の差違
図 1.5 ガラス寸法違いによる複層ガラスの遮音性能の差違
② ガラスの支持条件による影響

実験室における試料の設置方法（ガラスの支持条件）は、JIS A 1416:2000 の「5.2.2.3 ガラスの設置」および附属書 2（規定）「ガラス測定用試験開口及びガラス固定用パテ」の「2.ガラス固定用パテ」に規定される方法による。しかし、実際に施工されるガラス支持方法は多種となるため、ここではガラス支持条件が遮音性能に及ぼす影響の有無を確認するために、代表的な板ガラス品種における異なるガラス支持材での音響透過損失の測定結果を参考として示す。

板ガラス品種は表②.1 の4 種類とした。開口寸法およびガラス寸法は、JIS A 1416:2000 に規定の開口とし、ガラス支持条件については、図②.2 に示すパテ施工（JIS A 1416）と、パテの代わりにバックアップ材を介して幅 5mm、厚さ 3～5mm のシリコンシーリング材を充填する方法により、現場の取り付け方法を模した設置方法の 2 条件をそれぞれ測定した。なお、測定は、一般財団法人 小林理学研究所試験室棟のタイプ II 試験室で実施した。

表 ②.1 ガラス支持条件が及ぼす影響の検討に用いた代表板ガラス品種

<table>
<thead>
<tr>
<th>板ガラス品種</th>
<th>厚み</th>
<th>略号</th>
</tr>
</thead>
<tbody>
<tr>
<td>単板ガラス</td>
<td>10ミリ</td>
<td>FL10</td>
</tr>
<tr>
<td>合わせガラス</td>
<td>10ミリ</td>
<td>L10PVB</td>
</tr>
<tr>
<td>防音用合わせガラス</td>
<td>10ミリ</td>
<td>L10遮音PVB</td>
</tr>
<tr>
<td>複層ガラス</td>
<td>4ミリ+空気層12ミリ+6ミリ</td>
<td>FL4+A12+FL6</td>
</tr>
</tbody>
</table>
図 ②.2 ガラス支持条件

支持条件の違いによる影響を比較するため、図 ②.3〜②.4 にそれぞれのガラスのパテ施工 (JIS A1416) とシリコーン施工の音響透過損失の測定結果を示した。

これらによると、単板ガラスでは支持条件の違いによる影響を受けやすいが、合わせガラスにおいては、その影響を受けにくいことが分かる。複層ガラスにおいても、単板ガラスに比べてその影響は小さいことが分かる。

(1). 単板ガラス（FL10）（図 ②.3）

シリコーン施工はパテ施工 (JIS A1416) に比べ、コインシデンス周波数付近における音響透過損失の落ち込みが大きい。これは、ガラス周辺支持部におけるエネルギー損失の違いによるものである。単板ガラスは、ガラス周辺支持条件の影響を受けやすいと言える。
(2). 合わせガラス(L10PVB)、防音合わせガラス(L10 遮音 PVB)（図②.4,②.5）

合わせガラスも単板ガラスと同様に、シリコーン施工はパテ施工(JIS A1416)に比べ、コインシデンス周波数付近における音響透過損失の落ち込みに差が生じるが、単板ガラスに比べてその影響は小さく抑えられる。これは、合わせガラスは中間膜によるガラス面内におけるエネルギー損失が大きく、ガラス周辺支持部におけるエネルギー損失の違いが影響しにくいためである。

防音合わせガラスにおいては、中間膜におけるエネルギー損失がさらに高く、その影響はさらに小さくなる。合わせガラスは、ガラス周辺支持条件の影響を受けにくいと言える。

(3). 複層ガラス(FL4+A12+FL6)（図②.6）

複層ガラスも単板ガラスと同様に、シリコーン施工はパテ施工(JIS A1416)に比べ、コインシデンス周波数付近における音響透過損失の落ち込みが大きくなる傾向があるが、その違いは単板ガラスよりも小さい傾向にある。

なお、上記はガラス支持条件の違いによる比較の一例である。実際の開口部の遮音性は、開口形状やサッシ等の影響を大きく受ける場合がある。
図2.3 FL10の支持条件の違いによる比較

図2.4 L10PVBの支持条件の違いによる比較
資料-3 設置条件の影響による板ガラスの遮音性能について

図2.5 L10遮音 PVB の支持条件の違いによる比較

図2.6 FL4+A12+FL6 の支持条件の違いによる比較
参考文献（主な遮音性能評価方法）

1) JIS A 1419-1:2000「建築物及び建築部材の遮音性能の評価方法-第1部
 ：空気音遮断性能」
2) 日本建築学会編「建築物の遮音性能基準と設計指針 第二版」1997年
3) JIS A 4706:2000「サッシ」
4) ASTM E 413-04 "Classification for Rating Sound Insulation"
5) ISO 717-1:1996 "Rating of sound insulation in buildings and of building elements – Part 1
 : Airborne sound insulation

◎指導協力

（一財）小林理学研究所 建築音響研究室長
吉村 純一（工学博士）

◎編集委員

板硝子協会規格委員会

規格委員長 高木 一義（セントラル硝子）
規格委員 樋口 作夫（旭硝子）
規格委員 久田 隆司（日本板硝子）
規格委員 山口 慶和（セントラル硝子）
SC2／WG3 主査（旧） 大本 英雄（セントラル硝子）
SC2／WG3 主査（現） 米倉 正明（セントラル硝子）
SC2／WG3 委員 上沢 聡史（旭硝子）
SC2／WG3 委員 木下 泰斗（日本板硝子）

板硝子協会

調査役 松田 直彦